Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения задачи нам нужно знать, что в кубе все ребра и диагонали равны между собой, а также знать формулу для нахождения угла между двумя прямыми в пространстве:
cos(α) = (a·b) / (|a|·|b|),
где α - угол между прямыми, a и b - векторы, проведенные по прямым.
1. Угол между 𝐴𝐵 и 𝐴1𝐵1
Найдем векторы 𝐴𝐵 и 𝐴1𝐵1:
𝐴𝐵 = (1, 0, 0)
𝐴1𝐵1 = (1, 1, 1)
Тогда:
cos(α) = (𝐴𝐵·𝐴1𝐵1) / (|𝐴𝐵|·|𝐴1𝐵1|)
cos(α) = (1·1 + 0·1 + 0·1) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(1^2 + 1^2 + 1^2))
cos(α) = 1 / sqrt(3)
α = arccos(1 / sqrt(3))
α ≈ 54.74°
Ответ: угол между 𝐴𝐵 и 𝐴1𝐵1 ≈ 54.74°.
2. Угол между 𝐴𝐵 и 𝐴1𝐵
Найдем векторы 𝐴𝐵 и 𝐴1𝐵:
𝐴𝐵 = (1, 0, 0)
𝐴1𝐵 = (1, 1, 0)
Тогда:
cos(α) = (𝐴𝐵·𝐴1𝐵) / (|𝐴𝐵|·|𝐴1𝐵|)
cos(α) = (1·1 + 0·1 + 0·0) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(1^2 + 1^2 + 0^2))
cos(α) = 1 / sqrt(2)
α = arccos(1 / sqrt(2))
α ≈ 45°
Ответ: угол между 𝐴𝐵 и 𝐴1𝐵 ≈ 45°.
3. Угол между 𝐴𝐵 и 𝐶1𝐶
Найдем векторы 𝐴𝐵 и 𝐶1𝐶:
𝐴𝐵 = (1, 0, 0)
𝐶1𝐶 = (0, 1, 1)
Тогда:
cos(α) = (𝐴𝐵·𝐶1𝐶) / (|𝐴𝐵|·|𝐶1𝐶|)
cos(α) = (1·0 + 0·1 + 0·1) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(0^2 + 1^2 + 1^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между 𝐴𝐵 и 𝐶1𝐶 = 90°.
4. Угол между 𝐴𝐵 и 𝐶1𝐵
Найдем векторы 𝐴𝐵 и 𝐶1𝐵:
𝐴𝐵 = (1, 0, 0)
𝐶1𝐵 = (0, 1, 0)
Тогда:
cos(α) = (𝐴𝐵·𝐶1𝐵) / (|𝐴𝐵|·|𝐶1𝐵|)
cos(α) = (1·0 + 0·1 + 0·0) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(0^2 + 1^2 + 0^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между 𝐴𝐵 и 𝐶1𝐵 = 90°.
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1)
Найдем вектора нормалей к плоскостям (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) с помощью векторного произведения:
𝐴𝐵𝐶 = (1, 0, 0) × (0, 1, 0) = (0, 0, 1)
𝐵1𝐶1𝐷1 = (0, 1, 1) × (1, 1, 1) = (-1, 1, 0)
Тогда:
cos(α) = (𝐴𝐵𝐶·𝐵1𝐶1𝐷1) / (|𝐴𝐵𝐶|·|𝐵1𝐶1𝐷1|)
cos(α) = (0·(-1) + 0·1 + 1·0) / (sqrt(0^2 + 0^2 + 1^2)·sqrt((-1)^2 + 1^2 + 0^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) = 90°.
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵)
Найдем вектора нормалей к плоскостям (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) с помощью векторного произведения:
𝐴𝐵𝐶 = (1, 0, 0) × (0, 1, 0) = (0, 0, 1)
𝐵1𝐶1𝐵 = (0, 1, 1) × (1, 1, 0) = (-1, 1, -1)
Тогда:
cos(α) = (𝐴𝐵𝐶·𝐵1𝐶1𝐵) / (|𝐴𝐵𝐶|·|𝐵1𝐶1𝐵|)
cos(α) = (0·(-1) + 0·1 + 1·(-1)) / (sqrt(0^2 + 0^2 + 1^2)·sqrt((-1)^2 + 1^2 + (-1)^2))
cos(α) = -1 / sqrt(3)
α = arccos(-1 / sqrt(3))
α ≈ 109.47°
Ответ: угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) ≈ 109.47°.
cos(α) = (a·b) / (|a|·|b|),
где α - угол между прямыми, a и b - векторы, проведенные по прямым.
1. Угол между 𝐴𝐵 и 𝐴1𝐵1
Найдем векторы 𝐴𝐵 и 𝐴1𝐵1:
𝐴𝐵 = (1, 0, 0)
𝐴1𝐵1 = (1, 1, 1)
Тогда:
cos(α) = (𝐴𝐵·𝐴1𝐵1) / (|𝐴𝐵|·|𝐴1𝐵1|)
cos(α) = (1·1 + 0·1 + 0·1) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(1^2 + 1^2 + 1^2))
cos(α) = 1 / sqrt(3)
α = arccos(1 / sqrt(3))
α ≈ 54.74°
Ответ: угол между 𝐴𝐵 и 𝐴1𝐵1 ≈ 54.74°.
2. Угол между 𝐴𝐵 и 𝐴1𝐵
Найдем векторы 𝐴𝐵 и 𝐴1𝐵:
𝐴𝐵 = (1, 0, 0)
𝐴1𝐵 = (1, 1, 0)
Тогда:
cos(α) = (𝐴𝐵·𝐴1𝐵) / (|𝐴𝐵|·|𝐴1𝐵|)
cos(α) = (1·1 + 0·1 + 0·0) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(1^2 + 1^2 + 0^2))
cos(α) = 1 / sqrt(2)
α = arccos(1 / sqrt(2))
α ≈ 45°
Ответ: угол между 𝐴𝐵 и 𝐴1𝐵 ≈ 45°.
3. Угол между 𝐴𝐵 и 𝐶1𝐶
Найдем векторы 𝐴𝐵 и 𝐶1𝐶:
𝐴𝐵 = (1, 0, 0)
𝐶1𝐶 = (0, 1, 1)
Тогда:
cos(α) = (𝐴𝐵·𝐶1𝐶) / (|𝐴𝐵|·|𝐶1𝐶|)
cos(α) = (1·0 + 0·1 + 0·1) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(0^2 + 1^2 + 1^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между 𝐴𝐵 и 𝐶1𝐶 = 90°.
4. Угол между 𝐴𝐵 и 𝐶1𝐵
Найдем векторы 𝐴𝐵 и 𝐶1𝐵:
𝐴𝐵 = (1, 0, 0)
𝐶1𝐵 = (0, 1, 0)
Тогда:
cos(α) = (𝐴𝐵·𝐶1𝐵) / (|𝐴𝐵|·|𝐶1𝐵|)
cos(α) = (1·0 + 0·1 + 0·0) / (sqrt(1^2 + 0^2 + 0^2)·sqrt(0^2 + 1^2 + 0^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между 𝐴𝐵 и 𝐶1𝐵 = 90°.
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1)
Найдем вектора нормалей к плоскостям (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) с помощью векторного произведения:
𝐴𝐵𝐶 = (1, 0, 0) × (0, 1, 0) = (0, 0, 1)
𝐵1𝐶1𝐷1 = (0, 1, 1) × (1, 1, 1) = (-1, 1, 0)
Тогда:
cos(α) = (𝐴𝐵𝐶·𝐵1𝐶1𝐷1) / (|𝐴𝐵𝐶|·|𝐵1𝐶1𝐷1|)
cos(α) = (0·(-1) + 0·1 + 1·0) / (sqrt(0^2 + 0^2 + 1^2)·sqrt((-1)^2 + 1^2 + 0^2))
cos(α) = 0
α = arccos(0)
α = 90°
Ответ: угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) = 90°.
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵)
Найдем вектора нормалей к плоскостям (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) с помощью векторного произведения:
𝐴𝐵𝐶 = (1, 0, 0) × (0, 1, 0) = (0, 0, 1)
𝐵1𝐶1𝐵 = (0, 1, 1) × (1, 1, 0) = (-1, 1, -1)
Тогда:
cos(α) = (𝐴𝐵𝐶·𝐵1𝐶1𝐵) / (|𝐴𝐵𝐶|·|𝐵1𝐶1𝐵|)
cos(α) = (0·(-1) + 0·1 + 1·(-1)) / (sqrt(0^2 + 0^2 + 1^2)·sqrt((-1)^2 + 1^2 + (-1)^2))
cos(α) = -1 / sqrt(3)
α = arccos(-1 / sqrt(3))
α ≈ 109.47°
Ответ: угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) ≈ 109.47°.
0
·
Хороший ответ
14 марта 2023 19:29
Для решения задачи необходимо знать, что в кубе все грани и ребра равны между собой, а угол между диагоналями грани куба равен 90 градусов.
1. Угол между 𝐴𝐵 и 𝐴1𝐵1 равен углу между диагоналями противоположных граней куба. Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵1 равен 90 градусов.
2. Угол между 𝐴𝐵 и 𝐴1𝐵 равен углу между диагоналями грани куба. Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵 также равен 90 градусов.
3. Угол между 𝐴𝐵 и 𝐶1𝐶 равен углу между диагоналями противоположных граней куба. Таким образом, угол между 𝐴𝐵 и 𝐶1𝐶 равен 90 градусов.
4. Угол между 𝐴𝐵 и 𝐶1𝐵 равен углу между диагоналями грани куба. Таким образом, угол между 𝐴𝐵 и 𝐶1𝐵 также равен 90 градусов.
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) равен углу между диагоналями противоположных граней куба. Таким образом, угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) равен 90 градусов.
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) равен углу между диагоналями грани куба. Таким образом, угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) также равен 90 градусов.
1. Угол между 𝐴𝐵 и 𝐴1𝐵1 равен углу между диагоналями противоположных граней куба. Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵1 равен 90 градусов.
2. Угол между 𝐴𝐵 и 𝐴1𝐵 равен углу между диагоналями грани куба. Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵 также равен 90 градусов.
3. Угол между 𝐴𝐵 и 𝐶1𝐶 равен углу между диагоналями противоположных граней куба. Таким образом, угол между 𝐴𝐵 и 𝐶1𝐶 равен 90 градусов.
4. Угол между 𝐴𝐵 и 𝐶1𝐵 равен углу между диагоналями грани куба. Таким образом, угол между 𝐴𝐵 и 𝐶1𝐵 также равен 90 градусов.
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) равен углу между диагоналями противоположных граней куба. Таким образом, угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) равен 90 градусов.
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) равен углу между диагоналями грани куба. Таким образом, угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) также равен 90 градусов.
0
14 марта 2023 19:29
Остались вопросы?
Еще вопросы по категории Геометрия
Имеется торт в виде четырехугольной призмы с размерами 80x80x120 см. Сколько крема потребуется чтобы обмазать торт, если на 1 см2 уходит 50 грамм крем...
Тест 13. Движения 1. Какое отображение плоскости называется центральной симметрией? А) Отображение плоскости на себя, при котором кажд...
Основанием прямой призмы является параллелограмм, стороны которого равны 5 см и 2 см, а тупой угол равен 120° . Высота призмы равна 4 см. Вычисли боль...
В равнобедренном треугольнике ABC с основанием AC на сторонах AB и BC отмечены соответственно точки M и N так, что угол ACM равен углу CAN. Докажите ч...
таблица 7.7 признаки параллельности прямых . Параллельны ли прямые а и b . Можно с доказательствами. Желательно все задания...