Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 марта 2023 15:33
347
Найдите сторону ромба, если его диагонали равны 12 см и 6 см. Можно подробное решение. И чтобы всё было написано на бумажном листе
1
ответ
Решение:
Для решения задачи нам понадобится теорема Пифагора, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Также нам понадобится свойство ромба, что его диагонали делятся пополам и образуют прямой угол.
Пусть сторона ромба равна a. Тогда мы можем разделить ромб на 4 прямоугольных треугольника, каждый из которых имеет катеты a/2 и d/2, где d - длина диагонали. Применяя теорему Пифагора, мы можем записать:
$$(\frac{a}{2})^2 + (\frac{d}{2})^2 = (\frac{d}{2})^2$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2 - (\frac{d}{2})^2$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2(1 - \frac{1}{4})$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2(\frac{3}{4})$$
$$a = 2\sqrt{\frac{d^2}{4}\cdot\frac{3}{4}}$$
$$a = d\sqrt{3}$$
Теперь мы можем подставить значения диагоналей в нашу формулу:
$$a = 6\sqrt{3} \approx 10.39\text{ см}$$
Ответ: сторона ромба равна примерно 10.39 см.
Для решения задачи нам понадобится теорема Пифагора, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Также нам понадобится свойство ромба, что его диагонали делятся пополам и образуют прямой угол.
Пусть сторона ромба равна a. Тогда мы можем разделить ромб на 4 прямоугольных треугольника, каждый из которых имеет катеты a/2 и d/2, где d - длина диагонали. Применяя теорему Пифагора, мы можем записать:
$$(\frac{a}{2})^2 + (\frac{d}{2})^2 = (\frac{d}{2})^2$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2 - (\frac{d}{2})^2$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2(1 - \frac{1}{4})$$
$$(\frac{a}{2})^2 = (\frac{d}{2})^2(\frac{3}{4})$$
$$a = 2\sqrt{\frac{d^2}{4}\cdot\frac{3}{4}}$$
$$a = d\sqrt{3}$$
Теперь мы можем подставить значения диагоналей в нашу формулу:
$$a = 6\sqrt{3} \approx 10.39\text{ см}$$
Ответ: сторона ромба равна примерно 10.39 см.
0
·
Хороший ответ
26 марта 2023 15:42
Остались вопросы?
Еще вопросы по категории Геометрия
Как вывести формулу площади треугольника через 2 стороны и углу между ними...
Найдите площадь квадрата,описанного вокруг окружности радиуса 4...
Периметр равнобедренного треугольника равен 196 а основание-96. найдите площадь треугольника....
Одна из сторон тупоугольного равнобедренного треугольника на 17 см меньше другой. Найдите стороны этого треугольника,если его периметр равен 77 см.......
Укажите номера верных утверждений 1)В любом прямоугольнике диагонали взаимно перпендикулярны 2) диагонали квадрата взаимно перпендикулярны. 3) диагона...