Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для решения задачи нам понадобится использовать теорему косинусов:
a^2 = b^2 + c^2 - 2bc*cos(alpha)
где a, b, c - стороны треугольника, а alpha - угол между сторонами b и c.
В нашем случае сторона АС = 4 см, угол между сторонами АВ и ВС равен 120°, а стороны АВ и ВС равны между собой. Обозначим эту сторону как b.
Таким образом, у нас есть следующие данные:
AC = 4 см
AB = BC = b
angle B = 120°
angle A = angle C
Чтобы найти сторону НС, нам нужно найти сторону АН и вычесть ее из AC.
Найдем сначала сторону АН. Для этого нам понадобится найти угол АВН. Заметим, что треугольник АВС равнобедренный, поэтому угол А и угол С равны между собой. Также угол АВС равен 120°, поэтому угол А и угол ВСА равны 30°. Следовательно, угол АВН равен 60°.
Теперь мы можем применить теорему косинусов к треугольнику АВН:
AN^2 = AB^2 + BN^2 - 2*AB*BN*cos(60°)
Но мы знаем, что AB = BC = b, поэтому:
AN^2 = b^2 + BN^2 - 2*b*BN*cos(60°)
Но угол между сторонами BN и BC также равен 60°, поэтому:
BN = BC*cos(60°) = b*0.5
Теперь мы можем подставить это выражение в формулу для AN:
AN^2 = b^2 + (b*0.5)^2 - 2*b*(b*0.5)*cos(60°)
AN^2 = b^2 + 0.25*b^2 - b^2*0.5
AN^2 = 0.25*b^2
AN = 0.5*b
Теперь мы можем найти НС:
NS = AC - AN
NS = 4 - 0.5*b
Но мы знаем, что угол В равен 120°, поэтому мы можем использовать теорему синусов, чтобы найти b:
b/sin(120°) = 4/sin(angle A)
sin(angle A) = sin(angle C) = sin(180° - angle A - angle B) = sin(60°) = sqrt(3)/2
b = 4*sin(120°)/sin(angle A) = 4*sqrt(3)/3
Теперь мы можем подставить это значение в формулу для NS:
NS = 4 - 0.5*b = 4 - 2*sqrt(3)/3
Ответ: НС = 4 - 2*sqrt(3)/3 см.
a^2 = b^2 + c^2 - 2bc*cos(alpha)
где a, b, c - стороны треугольника, а alpha - угол между сторонами b и c.
В нашем случае сторона АС = 4 см, угол между сторонами АВ и ВС равен 120°, а стороны АВ и ВС равны между собой. Обозначим эту сторону как b.
Таким образом, у нас есть следующие данные:
AC = 4 см
AB = BC = b
angle B = 120°
angle A = angle C
Чтобы найти сторону НС, нам нужно найти сторону АН и вычесть ее из AC.
Найдем сначала сторону АН. Для этого нам понадобится найти угол АВН. Заметим, что треугольник АВС равнобедренный, поэтому угол А и угол С равны между собой. Также угол АВС равен 120°, поэтому угол А и угол ВСА равны 30°. Следовательно, угол АВН равен 60°.
Теперь мы можем применить теорему косинусов к треугольнику АВН:
AN^2 = AB^2 + BN^2 - 2*AB*BN*cos(60°)
Но мы знаем, что AB = BC = b, поэтому:
AN^2 = b^2 + BN^2 - 2*b*BN*cos(60°)
Но угол между сторонами BN и BC также равен 60°, поэтому:
BN = BC*cos(60°) = b*0.5
Теперь мы можем подставить это выражение в формулу для AN:
AN^2 = b^2 + (b*0.5)^2 - 2*b*(b*0.5)*cos(60°)
AN^2 = b^2 + 0.25*b^2 - b^2*0.5
AN^2 = 0.25*b^2
AN = 0.5*b
Теперь мы можем найти НС:
NS = AC - AN
NS = 4 - 0.5*b
Но мы знаем, что угол В равен 120°, поэтому мы можем использовать теорему синусов, чтобы найти b:
b/sin(120°) = 4/sin(angle A)
sin(angle A) = sin(angle C) = sin(180° - angle A - angle B) = sin(60°) = sqrt(3)/2
b = 4*sin(120°)/sin(angle A) = 4*sqrt(3)/3
Теперь мы можем подставить это значение в формулу для NS:
NS = 4 - 0.5*b = 4 - 2*sqrt(3)/3
Ответ: НС = 4 - 2*sqrt(3)/3 см.
0
·
Хороший ответ
27 марта 2023 16:34
Остались вопросы?
Еще вопросы по категории Геометрия
Ребят, помогите плиз! Я буду вам благодарна ,за вашу отл помощь!:)**** Из условия PB-OD+x-CM=PA-BM+AO найдите вектор x....
Свойства четырехугольников...
Вычисли площадь закрашенного сектора Sсектора 1 и площадь незакрашенного сектора Sсектора 2, если радиус круга равен 8 см и центральный угол закрашен...
Какие из следующих утверждений верны? 1) Вписанные углы окружности равны. 2) Через любые 3точки, не принадлежащие одной прямой, проходит единственная...
В треугольнике АВС АС=ВС=84, высота АН равна 42. Найдите угол С....