Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения этой задачи нам нужно знать, что в кубе все грани и ребра равны между собой, а также что противоположные грани параллельны и перпендикулярны друг другу.
1. Угол между 𝐴𝐵 и 𝐴1𝐵1:
Обозначим точку 𝑀 — середину ребра 𝐴1𝐵1. Тогда треугольник 𝐴𝑀𝐵1 — прямоугольный, и угол между 𝐴𝐵 и 𝐴1𝐵1 будет равен углу 𝐴𝑀𝐵1, который можно найти по теореме Пифагора:
𝐴𝑀^2 = 𝐴𝐵^2 + 𝑀𝐵1^2
𝐴𝑀^2 = 𝐴𝐵^2 + (𝐴1𝐵1/2)^2
𝐴𝑀^2 = 𝐴𝐵^2 + 𝐴1𝐵1^2/4
𝐴𝑀/𝐴𝐵 = √(1 + 𝐴1𝐵1^2/4𝐴𝐵^2)
Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵1 равен arctg(𝐴1𝐵1/2𝐴𝐵).
2. Угол между 𝐴𝐵 и 𝐴1𝐵:
Поскольку 𝐴𝐵 и 𝐴1𝐵 лежат на одной плоскости, угол между ними равен углу между векторами 𝐴𝐵 и 𝐴1𝐵, который можно найти по формуле скалярного произведения:
cos 𝜃 = 𝐴𝐵 · 𝐴1𝐵 / (|𝐴𝐵| · |𝐴1𝐵|)
|𝐴𝐵| = |𝐴1𝐵|, поэтому
cos 𝜃 = 𝐴𝐵 · 𝐴1𝐵 / 𝐴𝐵^2
𝜃 = arccos(𝐴𝐵 · 𝐴1𝐵 / 𝐴𝐵^2)
3. Угол между 𝐴𝐵 и 𝐶1𝐶:
Обозначим точку 𝑁 — середину ребра 𝐶1𝐶. Тогда треугольник 𝐴𝑁𝐶 — прямоугольный, и угол между 𝐴𝐵 и 𝐶1𝐶 будет равен углу 𝐴𝑁𝐶, который можно найти по теореме Пифагора:
𝐴𝑁^2 = 𝐴𝐵^2 + 𝑁𝐶^2
𝐴𝑁^2 = 𝐴𝐵^2 + (𝐶1𝐶/2)^2
𝐴𝑁^2 = 𝐴𝐵^2 + 𝐶1𝐶^2/4
𝐴𝑁/𝐴𝐵 = √(1 + 𝐶1𝐶^2/4𝐴𝐵^2)
Таким образом, угол между 𝐴𝐵 и 𝐶1𝐶 равен arctg(𝐶1𝐶/2𝐴𝐵).
4. Угол между 𝐴𝐵 и 𝐶1𝐵:
Поскольку 𝐵𝐶1 параллельна 𝐴𝐷, то 𝐴𝐵𝐶1𝐷 и 𝐴𝐵𝐵𝐶1 — подобные треугольники. Тогда
𝐴𝐵/𝐴𝐵𝐵 = 𝐴𝐷/𝐴𝐶1
𝐴𝐵𝐵 = 𝐴𝐵 · 𝐴𝐶1 / 𝐴𝐷
Аналогично, 𝐵𝐶1𝐶 и 𝐴𝐵𝐶𝐵 — подобные треугольники, и
𝐵𝐶1/𝐴𝐵 = 𝐵𝐶/𝐴𝐵𝐵
𝐵𝐶1 = 𝐵𝐶 · 𝐴𝐵 / 𝐴𝐵𝐵
Теперь мы можем найти угол между 𝐴𝐵 и 𝐶1𝐵, используя формулу скалярного произведения:
cos 𝜃 = 𝐴𝐵 · 𝐶1𝐵 / (|𝐴𝐵| · |𝐶1𝐵|)
|𝐴𝐵| = √(𝐴𝐵^2 + 𝐴𝐵𝐵^2), |𝐶1𝐵| = √(𝐶1𝐶^2 + 𝐵𝐶1^2)
cos 𝜃 = 𝐴𝐵 · 𝐶1𝐶 · 𝐴𝐵𝐵 / (𝐴𝐵^2 · √(𝐶1𝐶^2 + 𝐵𝐶1^2))
𝜃 = arccos(𝐴𝐵 · 𝐶1𝐶 · 𝐴𝐵𝐵 / (𝐴𝐵^2 · √(𝐶1𝐶^2 + 𝐵𝐶1^2)))
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1):
Поскольку (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) пересекаются по ребру 𝐵1𝐶1, то угол между ними равен углу между плоскостями, содержащими эти грани. Этот угол можно найти по формуле:
cos 𝜃 = (𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1) · (𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1) / (|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1|)
|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1| = 𝑉, где 𝑉 — объем куба
cos 𝜃 = 𝑉^2 / (𝑉^2 · |𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐶1𝐷1|)
|𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐶1𝐷1| = 𝑆, где 𝑆 — площадь грани куба
cos 𝜃 = 𝑆 / (𝑉 · 𝑆)
𝜃 = arccos(𝑆 / (𝑉 · 𝑆))
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵):
Поскольку (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) пересекаются по ребру 𝐵1𝐶, то угол между ними равен углу между плоскостями, содержащими эти грани. Этот угол можно найти по той же формуле, что и в предыдущем пункте:
cos 𝜃 = (𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1) · (𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶) / (|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶|)
|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶| = 𝑉, где 𝑉 — объем куба
cos 𝜃 = 𝑉^2 / (𝑉^2 · |𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐵𝐶|)
|𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐵𝐶| = 𝑆, где 𝑆 — площадь грани куба
cos 𝜃 = 𝑆 / (𝑉 · 𝑆)
𝜃 = arccos(𝑆 / (𝑉 · 𝑆))
1. Угол между 𝐴𝐵 и 𝐴1𝐵1:
Обозначим точку 𝑀 — середину ребра 𝐴1𝐵1. Тогда треугольник 𝐴𝑀𝐵1 — прямоугольный, и угол между 𝐴𝐵 и 𝐴1𝐵1 будет равен углу 𝐴𝑀𝐵1, который можно найти по теореме Пифагора:
𝐴𝑀^2 = 𝐴𝐵^2 + 𝑀𝐵1^2
𝐴𝑀^2 = 𝐴𝐵^2 + (𝐴1𝐵1/2)^2
𝐴𝑀^2 = 𝐴𝐵^2 + 𝐴1𝐵1^2/4
𝐴𝑀/𝐴𝐵 = √(1 + 𝐴1𝐵1^2/4𝐴𝐵^2)
Таким образом, угол между 𝐴𝐵 и 𝐴1𝐵1 равен arctg(𝐴1𝐵1/2𝐴𝐵).
2. Угол между 𝐴𝐵 и 𝐴1𝐵:
Поскольку 𝐴𝐵 и 𝐴1𝐵 лежат на одной плоскости, угол между ними равен углу между векторами 𝐴𝐵 и 𝐴1𝐵, который можно найти по формуле скалярного произведения:
cos 𝜃 = 𝐴𝐵 · 𝐴1𝐵 / (|𝐴𝐵| · |𝐴1𝐵|)
|𝐴𝐵| = |𝐴1𝐵|, поэтому
cos 𝜃 = 𝐴𝐵 · 𝐴1𝐵 / 𝐴𝐵^2
𝜃 = arccos(𝐴𝐵 · 𝐴1𝐵 / 𝐴𝐵^2)
3. Угол между 𝐴𝐵 и 𝐶1𝐶:
Обозначим точку 𝑁 — середину ребра 𝐶1𝐶. Тогда треугольник 𝐴𝑁𝐶 — прямоугольный, и угол между 𝐴𝐵 и 𝐶1𝐶 будет равен углу 𝐴𝑁𝐶, который можно найти по теореме Пифагора:
𝐴𝑁^2 = 𝐴𝐵^2 + 𝑁𝐶^2
𝐴𝑁^2 = 𝐴𝐵^2 + (𝐶1𝐶/2)^2
𝐴𝑁^2 = 𝐴𝐵^2 + 𝐶1𝐶^2/4
𝐴𝑁/𝐴𝐵 = √(1 + 𝐶1𝐶^2/4𝐴𝐵^2)
Таким образом, угол между 𝐴𝐵 и 𝐶1𝐶 равен arctg(𝐶1𝐶/2𝐴𝐵).
4. Угол между 𝐴𝐵 и 𝐶1𝐵:
Поскольку 𝐵𝐶1 параллельна 𝐴𝐷, то 𝐴𝐵𝐶1𝐷 и 𝐴𝐵𝐵𝐶1 — подобные треугольники. Тогда
𝐴𝐵/𝐴𝐵𝐵 = 𝐴𝐷/𝐴𝐶1
𝐴𝐵𝐵 = 𝐴𝐵 · 𝐴𝐶1 / 𝐴𝐷
Аналогично, 𝐵𝐶1𝐶 и 𝐴𝐵𝐶𝐵 — подобные треугольники, и
𝐵𝐶1/𝐴𝐵 = 𝐵𝐶/𝐴𝐵𝐵
𝐵𝐶1 = 𝐵𝐶 · 𝐴𝐵 / 𝐴𝐵𝐵
Теперь мы можем найти угол между 𝐴𝐵 и 𝐶1𝐵, используя формулу скалярного произведения:
cos 𝜃 = 𝐴𝐵 · 𝐶1𝐵 / (|𝐴𝐵| · |𝐶1𝐵|)
|𝐴𝐵| = √(𝐴𝐵^2 + 𝐴𝐵𝐵^2), |𝐶1𝐵| = √(𝐶1𝐶^2 + 𝐵𝐶1^2)
cos 𝜃 = 𝐴𝐵 · 𝐶1𝐶 · 𝐴𝐵𝐵 / (𝐴𝐵^2 · √(𝐶1𝐶^2 + 𝐵𝐶1^2))
𝜃 = arccos(𝐴𝐵 · 𝐶1𝐶 · 𝐴𝐵𝐵 / (𝐴𝐵^2 · √(𝐶1𝐶^2 + 𝐵𝐶1^2)))
5. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1):
Поскольку (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) пересекаются по ребру 𝐵1𝐶1, то угол между ними равен углу между плоскостями, содержащими эти грани. Этот угол можно найти по формуле:
cos 𝜃 = (𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1) · (𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1) / (|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1|)
|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐶1𝐷1 × 𝐵𝐶1| = 𝑉, где 𝑉 — объем куба
cos 𝜃 = 𝑉^2 / (𝑉^2 · |𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐶1𝐷1|)
|𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐶1𝐷1| = 𝑆, где 𝑆 — площадь грани куба
cos 𝜃 = 𝑆 / (𝑉 · 𝑆)
𝜃 = arccos(𝑆 / (𝑉 · 𝑆))
6. Угол между (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵):
Поскольку (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵) пересекаются по ребру 𝐵1𝐶, то угол между ними равен углу между плоскостями, содержащими эти грани. Этот угол можно найти по той же формуле, что и в предыдущем пункте:
cos 𝜃 = (𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1) · (𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶) / (|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶|)
|𝐴𝐵 × 𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐵𝐶1 × 𝐵𝐶| = 𝑉, где 𝑉 — объем куба
cos 𝜃 = 𝑉^2 / (𝑉^2 · |𝐵𝐶 × 𝐵𝐶1| · |𝐵1𝐶1 × 𝐵𝐶|)
|𝐵𝐶 × 𝐵𝐶1| = |𝐵1𝐶1 × 𝐵𝐶| = 𝑆, где 𝑆 — площадь грани куба
cos 𝜃 = 𝑆 / (𝑉 · 𝑆)
𝜃 = arccos(𝑆 / (𝑉 · 𝑆))
0
·
Хороший ответ
28 марта 2023 21:32
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь прямоугольного треугольника равна 18 корень из 3 .Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу....
Боковая сторона равнобедренного треугольника равна 13 см, а основание 24 см. Найдите радиус вписанной окружности....
Помогите. Нужно сделать тест. 1)Длина отрезка АВ равна 12 см. Сколько существует на прямой АВ точек, для которых сумма расстояний до концов отрезка АВ...
В треугольнике abc угол C равен 90 градусов,AB=10,BC=8.НАЙДИТЕ:cos b...
1 задача. Высота конуса равна 8 см, а радиус основания равен 6 см. Найдите площадь боковой поверхности конуса? 2 задача. Высота конуса равна 6 м. А ди...
Все предметы