Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
29 марта 2023 05:07
323
Теорема о площади треугольника. Доказательство формулы площади треугольника. Подробнее. С рисунком в формате jpg или jpeg
1
ответ
Формула площади треугольника:
S = 1/2 * a * h
где a - основание треугольника, h - высота, опущенная на это основание.
Доказательство:
Рассмотрим произвольный треугольник ABC.

Проведем высоту CD, опущенную на сторону AB.
Тогда треугольник ACD и треугольник BCD - прямоугольные, так как угол ACD и угол BCD являются прямыми.
По теореме Пифагора:
AC^2 = AD^2 + CD^2
BC^2 = BD^2 + CD^2
Вычтем второе равенство из первого:
AC^2 - BC^2 = AD^2 - BD^2
(AC + BC)(AC - BC) = (AD + BD)(AD - BD)
AC - BC = (AD + BD)(AD - BD)/(AC + BC)
Высота CD является средней линией в треугольнике ABD, поэтому:
BD = 2S/AB
AD = 2S/BC
Подставляем значения AD и BD в предыдущее равенство:
AC - BC = (2S/BC + 2S/AB)(2S/BC - 2S/AB)/(AC + BC)
AC - BC = 2S(AB + BC - AC)/(AB * BC)
Выразим S:
S = 1/2 * AB * CD = 1/2 * AB * (AC - BC)/(2 * AB * sin(alpha/2)) = 1/2 * AC * BC * sin(alpha)
где alpha - угол между сторонами AC и BC.
Таким образом, мы получили формулу площади треугольника через основание и высоту, а также через длины сторон и угол между ними.
S = 1/2 * a * h
где a - основание треугольника, h - высота, опущенная на это основание.
Доказательство:
Рассмотрим произвольный треугольник ABC.

Проведем высоту CD, опущенную на сторону AB.
Тогда треугольник ACD и треугольник BCD - прямоугольные, так как угол ACD и угол BCD являются прямыми.
По теореме Пифагора:
AC^2 = AD^2 + CD^2
BC^2 = BD^2 + CD^2
Вычтем второе равенство из первого:
AC^2 - BC^2 = AD^2 - BD^2
(AC + BC)(AC - BC) = (AD + BD)(AD - BD)
AC - BC = (AD + BD)(AD - BD)/(AC + BC)
Высота CD является средней линией в треугольнике ABD, поэтому:
BD = 2S/AB
AD = 2S/BC
Подставляем значения AD и BD в предыдущее равенство:
AC - BC = (2S/BC + 2S/AB)(2S/BC - 2S/AB)/(AC + BC)
AC - BC = 2S(AB + BC - AC)/(AB * BC)
Выразим S:
S = 1/2 * AB * CD = 1/2 * AB * (AC - BC)/(2 * AB * sin(alpha/2)) = 1/2 * AC * BC * sin(alpha)
где alpha - угол между сторонами AC и BC.
Таким образом, мы получили формулу площади треугольника через основание и высоту, а также через длины сторон и угол между ними.
0
·
Хороший ответ
29 марта 2023 05:09
Остались вопросы?
Еще вопросы по категории Геометрия
При пересечении двух прямых один из углов равен 111°. Найти остальные углы....
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC = 44, MN = 24. Площадь треугольника ABC...
Периметр ромба равен 24, а косинус одного из углов равен 2√2/3. Найдите площадь ромба....
Сумма вертикальных углов АОВ и СОD, образованных при пересечении прямых АD и ВС, равна 108 0 . Найдите угол ВОD . Можно рисунком? заранее спасибо....
Основания равнобедренной трапеции равны 56 и 104, боковая сторона равна 30. Найдите длину диагонали трапеции....