Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
30 марта 2023 05:40
453
На двух концентрических сферах радиусами R1 = 0,038 м и R2 = 0,1 м равномерно распределены заряды с поверхностными плотностями σ1 = 1,9 нКл/м2 и σ2 = 1,1 нКл/м2. Определите модуль вектора смещения в точке А, находящейся на расстоянии6,8 м от общего центра сфер. Результат выразите в системе СИ.
1
ответ
Для решения задачи воспользуемся формулой для силы, действующей на точечный заряд, находящийся на расстоянии r от заряда с поверхностной плотностью σ:
F = k*q*σ/r^2,
где k - постоянная Кулона (k = 1/(4πε0), где ε0 - электрическая постоянная), q - заряд точечного заряда.
Для нахождения вектора смещения воспользуемся принципом суперпозиции: сумма векторов смещения от каждого заряда равна вектору смещения от общего заряда, равного сумме зарядов.
Сначала найдем суммарный заряд каждой сферы:
Q1 = 4πR1^2*σ1 = 4π*0,038^2*1,9*10^-9 = 3,62*10^-10 Кл
Q2 = 4πR2^2*σ2 = 4π*0,1^2*1,1*10^-9 = 1,38*10^-9 Кл
Суммарный заряд системы:
Q = Q1 + Q2 = 1,74*10^-9 Кл
Теперь найдем вектор смещения от каждого заряда до точки А. Для этого воспользуемся теоремой Пифагора:
r1 = √(R1^2 + d^2) = √(0,038^2 + 6,8^2) = 6,801 м
r2 = √(R2^2 + d^2) = √(0,1^2 + 6,8^2) = 6,807 м
где d - расстояние между центрами сфер.
Теперь можем найти вектор смещения от каждого заряда до точки А:
r1_vec = k*q1*(6,8/r1^2)*r1_vec/r1 = 9*10^9*3,62*10^-10*(6,8/6,801)^2*(6,8/r1)*r1_vec/r1 = 1,18*10^-3*r1_vec
r2_vec = k*q2*(6,8/r2^2)*r2_vec/r2 = 9*10^9*1,38*10^-9*(6,8/6,807)^2*(6,8/r2)*r2_vec/r2 = 2,43*10^-4*r2_vec
где r1_vec и r2_vec - радиус-векторы центров сфер.
Теперь можем найти суммарный вектор смещения:
r_vec = r1_vec + r2_vec = 1,18*10^-3*r1_vec + 2,43*10^-4*r2_vec = (1,17*10^-3, -0,43*10^-3, 0) м
Модуль вектора смещения:
|r| = √(r_x^2 + r_y^2 + r_z^2) = √((1,17*10^-3)^2 + (-0,43*10^-3)^2) = 1,23*10^-3 м
Ответ: |r| = 1,23 мм.
F = k*q*σ/r^2,
где k - постоянная Кулона (k = 1/(4πε0), где ε0 - электрическая постоянная), q - заряд точечного заряда.
Для нахождения вектора смещения воспользуемся принципом суперпозиции: сумма векторов смещения от каждого заряда равна вектору смещения от общего заряда, равного сумме зарядов.
Сначала найдем суммарный заряд каждой сферы:
Q1 = 4πR1^2*σ1 = 4π*0,038^2*1,9*10^-9 = 3,62*10^-10 Кл
Q2 = 4πR2^2*σ2 = 4π*0,1^2*1,1*10^-9 = 1,38*10^-9 Кл
Суммарный заряд системы:
Q = Q1 + Q2 = 1,74*10^-9 Кл
Теперь найдем вектор смещения от каждого заряда до точки А. Для этого воспользуемся теоремой Пифагора:
r1 = √(R1^2 + d^2) = √(0,038^2 + 6,8^2) = 6,801 м
r2 = √(R2^2 + d^2) = √(0,1^2 + 6,8^2) = 6,807 м
где d - расстояние между центрами сфер.
Теперь можем найти вектор смещения от каждого заряда до точки А:
r1_vec = k*q1*(6,8/r1^2)*r1_vec/r1 = 9*10^9*3,62*10^-10*(6,8/6,801)^2*(6,8/r1)*r1_vec/r1 = 1,18*10^-3*r1_vec
r2_vec = k*q2*(6,8/r2^2)*r2_vec/r2 = 9*10^9*1,38*10^-9*(6,8/6,807)^2*(6,8/r2)*r2_vec/r2 = 2,43*10^-4*r2_vec
где r1_vec и r2_vec - радиус-векторы центров сфер.
Теперь можем найти суммарный вектор смещения:
r_vec = r1_vec + r2_vec = 1,18*10^-3*r1_vec + 2,43*10^-4*r2_vec = (1,17*10^-3, -0,43*10^-3, 0) м
Модуль вектора смещения:
|r| = √(r_x^2 + r_y^2 + r_z^2) = √((1,17*10^-3)^2 + (-0,43*10^-3)^2) = 1,23*10^-3 м
Ответ: |r| = 1,23 мм.
0
·
Хороший ответ
30 марта 2023 05:43
Остались вопросы?
Еще вопросы по категории Физика
Тесты по физике 8 класс...
Сколько дров надо сжечь в печке с КПД 40%, чтобы получить из 200 килограмм снега, взятого при температуре -10 градусов цельсия, воду при температуре 2...
Сформулируйте и запишите закон Ома для однородного и неоднородного участка электрической цепи...
Где можно обнаружить магнитное поле ? приведите примеры )...
определите расход энергии за 40 с в автомобильной электрической лампочке, рассчитанной на напряжение 12Впри силе тока 3.5 А...
Все предметы