Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
30 марта 2023 05:40
427
На двух концентрических сферах радиусами R1 = 0,038 м и R2 = 0,1 м равномерно распределены заряды с поверхностными плотностями σ1 = 1,9 нКл/м2 и σ2 = 1,1 нКл/м2. Определите модуль вектора смещения в точке А, находящейся на расстоянии6,8 м от общего центра сфер. Результат выразите в системе СИ.
1
ответ
Для решения задачи воспользуемся формулой для силы, действующей на точечный заряд, находящийся на расстоянии r от заряда с поверхностной плотностью σ:
F = k*q*σ/r^2,
где k - постоянная Кулона (k = 1/(4πε0), где ε0 - электрическая постоянная), q - заряд точечного заряда.
Для нахождения вектора смещения воспользуемся принципом суперпозиции: сумма векторов смещения от каждого заряда равна вектору смещения от общего заряда, равного сумме зарядов.
Сначала найдем суммарный заряд каждой сферы:
Q1 = 4πR1^2*σ1 = 4π*0,038^2*1,9*10^-9 = 3,62*10^-10 Кл
Q2 = 4πR2^2*σ2 = 4π*0,1^2*1,1*10^-9 = 1,38*10^-9 Кл
Суммарный заряд системы:
Q = Q1 + Q2 = 1,74*10^-9 Кл
Теперь найдем вектор смещения от каждого заряда до точки А. Для этого воспользуемся теоремой Пифагора:
r1 = √(R1^2 + d^2) = √(0,038^2 + 6,8^2) = 6,801 м
r2 = √(R2^2 + d^2) = √(0,1^2 + 6,8^2) = 6,807 м
где d - расстояние между центрами сфер.
Теперь можем найти вектор смещения от каждого заряда до точки А:
r1_vec = k*q1*(6,8/r1^2)*r1_vec/r1 = 9*10^9*3,62*10^-10*(6,8/6,801)^2*(6,8/r1)*r1_vec/r1 = 1,18*10^-3*r1_vec
r2_vec = k*q2*(6,8/r2^2)*r2_vec/r2 = 9*10^9*1,38*10^-9*(6,8/6,807)^2*(6,8/r2)*r2_vec/r2 = 2,43*10^-4*r2_vec
где r1_vec и r2_vec - радиус-векторы центров сфер.
Теперь можем найти суммарный вектор смещения:
r_vec = r1_vec + r2_vec = 1,18*10^-3*r1_vec + 2,43*10^-4*r2_vec = (1,17*10^-3, -0,43*10^-3, 0) м
Модуль вектора смещения:
|r| = √(r_x^2 + r_y^2 + r_z^2) = √((1,17*10^-3)^2 + (-0,43*10^-3)^2) = 1,23*10^-3 м
Ответ: |r| = 1,23 мм.
F = k*q*σ/r^2,
где k - постоянная Кулона (k = 1/(4πε0), где ε0 - электрическая постоянная), q - заряд точечного заряда.
Для нахождения вектора смещения воспользуемся принципом суперпозиции: сумма векторов смещения от каждого заряда равна вектору смещения от общего заряда, равного сумме зарядов.
Сначала найдем суммарный заряд каждой сферы:
Q1 = 4πR1^2*σ1 = 4π*0,038^2*1,9*10^-9 = 3,62*10^-10 Кл
Q2 = 4πR2^2*σ2 = 4π*0,1^2*1,1*10^-9 = 1,38*10^-9 Кл
Суммарный заряд системы:
Q = Q1 + Q2 = 1,74*10^-9 Кл
Теперь найдем вектор смещения от каждого заряда до точки А. Для этого воспользуемся теоремой Пифагора:
r1 = √(R1^2 + d^2) = √(0,038^2 + 6,8^2) = 6,801 м
r2 = √(R2^2 + d^2) = √(0,1^2 + 6,8^2) = 6,807 м
где d - расстояние между центрами сфер.
Теперь можем найти вектор смещения от каждого заряда до точки А:
r1_vec = k*q1*(6,8/r1^2)*r1_vec/r1 = 9*10^9*3,62*10^-10*(6,8/6,801)^2*(6,8/r1)*r1_vec/r1 = 1,18*10^-3*r1_vec
r2_vec = k*q2*(6,8/r2^2)*r2_vec/r2 = 9*10^9*1,38*10^-9*(6,8/6,807)^2*(6,8/r2)*r2_vec/r2 = 2,43*10^-4*r2_vec
где r1_vec и r2_vec - радиус-векторы центров сфер.
Теперь можем найти суммарный вектор смещения:
r_vec = r1_vec + r2_vec = 1,18*10^-3*r1_vec + 2,43*10^-4*r2_vec = (1,17*10^-3, -0,43*10^-3, 0) м
Модуль вектора смещения:
|r| = √(r_x^2 + r_y^2 + r_z^2) = √((1,17*10^-3)^2 + (-0,43*10^-3)^2) = 1,23*10^-3 м
Ответ: |r| = 1,23 мм.
0
·
Хороший ответ
30 марта 2023 05:43
Остались вопросы?
Еще вопросы по категории Физика
при настройке колебательного контура радиопередатчика его индуктивность увеличили . как при этом изменяется частота излучаемых волн?...
Каков вес бензина объемом 25 литров в стоящем на полу бидоне? К какому телу приложен этот вес? Изобразите эту силу....
почему два параллельных проводника по которым текут токи в одном направлении притягиваются а два параллельных электронных пучка отталкиваются...
Штангист поднял штангу массой 125 кг на высоту 70 см за 0.3 с. Какую среднюю мощность развил спортсмен при этом?...
5. Энергия, выделившая при сгорании керосина массой 100 г, тратится на нагревание воды от 20 °C до 30 °С. Какую массу воды нагрели? (удельная теплота...
Все предметы