Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 апреля 2023 20:25
1013
Докажите что , если медиана треугольника равна половине стороны , к которой она проведена , то треугольник прямоугольный.
1
ответ
Пусть в ∆ АВС отрезок СМ - медиана и по условию СМ=АМ=ВМ. Тогда ∆ АМС и ∆ ВМС - равнобедренные с равными углами при основаниях. Примем ∠МАС=∠МСА=х, и ∠МСВ=МВС =у
Сумма углов треугольника 180° ⇒ 2х+2у=180° ⇒ х+у=90°. Тогда ∠АСВ=х+у=90°. ⇒ ∆ АВС - прямоугольный. Доказано.
Сумма углов треугольника 180° ⇒ 2х+2у=180° ⇒ х+у=90°. Тогда ∠АСВ=х+у=90°. ⇒ ∆ АВС - прямоугольный. Доказано.

0
·
Хороший ответ
3 апреля 2023 20:25
Остались вопросы?
Еще вопросы по категории Геометрия
хорды аб и сд пересекаются в точке к так , что ак 27 см равны вк равно 3 ск равно кд найти сд...
Помогите пожалуста очень срочно!!! По подробнее!!! Прямая CD проходит через вершину треугольника ABC и не лежит в плоскости ABC . E и F середины отрез...
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, которые равны 4 см и 3 см , считая от...
Кто такой моргенчлен?...
найдите градусную меру углов,которые получаются при пересечении двух прямых,если сумма трёх из этих углов равна 270 градусов...