Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 00:54
916
Докажите что выражение (n-6)(n+8)-2(n-25) при любом значении n принимает положительное значение.
1
ответ
-----
(n-6)(n+8)-2(n-25)=n^2+2n-48-2n+50=n^2+2
Очевидно, что при раскрытии скобки мы получаем n в квадрате плюс 2.
А число в квадрате не может быть отрицательным, значит n^2+2 больше или равно 2 при любых n
(n-6)(n+8)-2(n-25)=n^2+2n-48-2n+50=n^2+2
Очевидно, что при раскрытии скобки мы получаем n в квадрате плюс 2.
А число в квадрате не может быть отрицательным, значит n^2+2 больше или равно 2 при любых n
0
·
Хороший ответ
4 апреля 2023 00:54
Остались вопросы?
Еще вопросы по категории Алгебра
7 в степени 2х-1 разделить на 49 в степени х разделить на х...
Найдите координаты точки пересечения прямых 14х-у=138 у+5х=52...
найти корень уравнения 8 / x=x + 2...
Найти а1 в арифметической прогрессии если а7=9, d=2.Буду очень благодарнааа...
Найти sin2a, если cosа=-0,6 п<a<3п/2 cosa=-0,8...