Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1710 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Ответ:
(-∞; -3)∪(0; +∞)
Объяснение:
Дано неравенство
x²+3·x>0
Рассмотрим функцию: f(x)=x²+3·x. Чтобы применит метод интервалов определим нули функции f(x):
f(x)=0 ⇔ x²+3·x=0 ⇔ (x+3)·x=0 ⇔ x₁= -3, x₂=0.
Нули функции f(x) делят ось Ох на промежутки (-∞; -3), (-3; 0) и (0; +∞), в каждом из которых функция f(x) сохраняет свой знак. Поэтому:
1) при x∈(-∞; -3) функция f(x)=x²+3·x>0, так как, например при -5∈(-∞; -3):
f(-5)=(-5)²+3·(-5)=25-15=10>0;
2) при x∈(-3; 0) функция f(x)=x²+3·x<0, так как, например при -2∈(-3; 0):
f(-2)=(-2)²+3·(-2)=4-6=-2<0;
3) при x∈(0; +∞) функция f(x)=x²+3·x>0, так как, например при 1∈(0; +∞):
f(1)=1²+3·1=1+3=4>0.
Тогда решением неравенства x²+3·x>0 будет:
x∈(-∞; -3)∪(0; +∞).
(-∞; -3)∪(0; +∞)
Объяснение:
Дано неравенство
x²+3·x>0
Рассмотрим функцию: f(x)=x²+3·x. Чтобы применит метод интервалов определим нули функции f(x):
f(x)=0 ⇔ x²+3·x=0 ⇔ (x+3)·x=0 ⇔ x₁= -3, x₂=0.
Нули функции f(x) делят ось Ох на промежутки (-∞; -3), (-3; 0) и (0; +∞), в каждом из которых функция f(x) сохраняет свой знак. Поэтому:
1) при x∈(-∞; -3) функция f(x)=x²+3·x>0, так как, например при -5∈(-∞; -3):
f(-5)=(-5)²+3·(-5)=25-15=10>0;
2) при x∈(-3; 0) функция f(x)=x²+3·x<0, так как, например при -2∈(-3; 0):
f(-2)=(-2)²+3·(-2)=4-6=-2<0;
3) при x∈(0; +∞) функция f(x)=x²+3·x>0, так как, например при 1∈(0; +∞):
f(1)=1²+3·1=1+3=4>0.
Тогда решением неравенства x²+3·x>0 будет:
x∈(-∞; -3)∪(0; +∞).
0
·
Хороший ответ
4 апреля 2023 01:38
Остались вопросы?
Еще вопросы по категории Алгебра
Найти точку пересечения касательной к графику функции y=x^4+3x-1 в точке M(1;3) с осью X....
Сколько корней имеет уравнение (log2 x)^2-5log2 x+24=0?...
Выполните действия: 1) 1,27×10⁵+8,23×10⁴ 2) 1,27×10`⁵–8,23×10`⁶ 3) 8,5×10¹²+3,91×10¹³+2,5×10¹² 4) 1,28×10`⁷+4,5×10`⁷–9,7×10`⁸...
Найти модуль чисел: \3\= \-4\= \0\=...
Производная √tgx ? Подскажите решение!...
Все предметы