Лучшие помощники
2 апреля 2023 03:06
588

Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом = 30° к линии горизонта. Определить скорость V2 отката платформы, если снаряд вылетает со скоростью V1 = 480 м/с. Масса платформы с орудием и снарядами m2 = 18 т, масса снаряда m1 = 60 кг. На какое расстояние откатится платформа, если коэффициент трения платформы о рельсы 0,05

1 ответ
Посмотреть ответы
Пусть угол отката - это \alpha. Напишем закон сохранения импульса для орудия и снаряда. Сначала он был равен нулю - орудие покоилось. Затем снаряд приобрёл импульс, значит снаряд его тоже приобрёл, но он имеет другой знак. Выпишем закон сохранения импульса в проекции на ось Ox:
0 = m_1v_1cos(\alpha) - (m_2-m_1)v_2 \Rightarrow v_2 = \frac = 14.33 м/сек.

Заметим, что тут я пишу , потому что после выстрела орудие потеряло массу одного снаряда.

Заметим, что сила нормальной реакции опоры для орудия равна N = (m_2-m_1)g. Это так, так как в проекции на ось Oy снаряд покоится. Если снаряд отъехал на l, то (так как сила трения равна F_ = kN, то её работа равна A = lF_ = lkN = lk(m_2-m_1)g. В момент начала движения у орудия была какая-то кинетическая энергия, а под конец её не стало - орудие остановилось. Значит, Работа силы трения и равна этой кинетической энергии:
A = lk(m_2-m_1)g = \frac{(m_2-m_1)v_2^2}
Отсюда имеем, что
l = \frac = 205.3489
0
·
Хороший ответ
4 апреля 2023 03:06
Остались вопросы?
Найти нужный