Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
2 апреля 2023 13:38
1120
Площадь равностороннего треугольника, вписанного в окружность, равна Q^2. Доказать, что радиус окружности равен (2Q^4√3)/3
1
ответ
Площадь правильного треугольника: S=a²√3/4 ⇒ a=2√S/⁴√3=2Q/⁴√3.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
0
·
Хороший ответ
4 апреля 2023 13:38
Остались вопросы?
Еще вопросы по категории Геометрия
Определите географические координаты Санкт-Петербург Кейптаун Канберра...
Правильные многоугольники...
Свойства трапеции и признаки трапеции...
В правильной треугольной пирамиде SABC с основанием ABC известны ребра: AB=8√3, SC=17. Найдите угол, образованный плоскостью основания и прямой AM, гд...
5.Есть координаты векторовa→ иb→. Определи координаты векторовu→ иv→, еслиu→= 3a→− 2b→ иv→= 2a→+b→...
Все предметы