Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 13:38
1239
Площадь равностороннего треугольника, вписанного в окружность, равна Q^2. Доказать, что радиус окружности равен (2Q^4√3)/3
1
ответ
Площадь правильного треугольника: S=a²√3/4 ⇒ a=2√S/⁴√3=2Q/⁴√3.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
0
·
Хороший ответ
4 апреля 2023 13:38
Остались вопросы?
Еще вопросы по категории Геометрия
На тетрадном листочке в клеточку изображены четыре точки: A, B, C и D. Найди AB, если сторона клетки равна 9 см....
На продолжении стороны АВ равнобедренного треугольника АВС с основанием АС отметили точку D так, что AD = АС и точка А находится между точками В и D....
На рисунке изображен треугольник АВС. Укажите что Медиана ,биссектриса, высота АА1- ВВ1- СС1-...
Свойства вписанного угла. Формулировка и доказательство...
треугольник АБС прямоугольный,в котором угол Б=90 градусов угол А=40 градусов найдите внешние углы этого треугольника (при каждой вершин...