Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 20:13
1166
Решите уравнение
При этом,после решения найдите все корни этого уравнения, принадлежащие отрезку ![[-\frac;-\frac{\pi } ] [-\frac;-\frac{\pi } ]](https://tex.z-dn.net/?f=%5B-%5Cfrac%7B5%5Cpi%20%7D%7B2%7D%3B-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5D)
1
ответ
Ответ:
Объяснение:
cosx(2cosx+tgx)=1
cosx(2cosx+(sinx/cosx))=1
2cos²x+sinx=1
2(1-sin²x)+sinx-1=0
2-2sin²x+sinx-1=0
-2sin²x+sinx+1=0
2sin²x-sinx-1=0
sinx=y
2y²-y-1=0 по теореме Виета корни y₁=-1/2 ; y₂=1
1) sinx=-1/2 ; x₁=(-1)ⁿ⁺¹arcsin(-1/2)+пn=(-1)ⁿ⁺¹(-п/6)+пn=
=-(-1)ⁿ⁺¹(п/6)+пn=(-1)ⁿ(п/6)+пn, n∈Z
x₁=(-1)ⁿ(п/6)+пn, n∈Z
2) sinx=1 ; частный случай x=(п/2)+2kп, k∈Z
корни этого уравнения, принадлежащие отрезку [-5п/2;-п/2]
1.1) x=(-1)ⁿ(п/6)+пn, n∈Z
n=-1 x₁=-(п/6)-п=-7п/6
n=-2 x₂=(п/6)-2п=-13п/6
1/2) x=(п/2)+2kп
k=-1 x₃=(п/2)-2п=-3п/2
Объяснение:
cosx(2cosx+tgx)=1
cosx(2cosx+(sinx/cosx))=1
2cos²x+sinx=1
2(1-sin²x)+sinx-1=0
2-2sin²x+sinx-1=0
-2sin²x+sinx+1=0
2sin²x-sinx-1=0
sinx=y
2y²-y-1=0 по теореме Виета корни y₁=-1/2 ; y₂=1
1) sinx=-1/2 ; x₁=(-1)ⁿ⁺¹arcsin(-1/2)+пn=(-1)ⁿ⁺¹(-п/6)+пn=
=-(-1)ⁿ⁺¹(п/6)+пn=(-1)ⁿ(п/6)+пn, n∈Z
x₁=(-1)ⁿ(п/6)+пn, n∈Z
2) sinx=1 ; частный случай x=(п/2)+2kп, k∈Z
корни этого уравнения, принадлежащие отрезку [-5п/2;-п/2]
1.1) x=(-1)ⁿ(п/6)+пn, n∈Z
n=-1 x₁=-(п/6)-п=-7п/6
n=-2 x₂=(п/6)-2п=-13п/6
1/2) x=(п/2)+2kп
k=-1 x₃=(п/2)-2п=-3п/2
0
·
Хороший ответ
4 апреля 2023 20:13
Остались вопросы?
Еще вопросы по категории Алгебра
Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заёмщика возрастает на...
Геометрическая прогрессия задана условием b1 = −3, bn + 1 = 6bn. Найдите сумму первых 4 её членов. если можно то, поэтапно и с объяснение...
задача!!!!в двух мешках было по 50кг сахара.После того как из одного мешка взяли в 3 раза больше сахара,чем из другого,в нем осталось в 2 раза меньше...
5(p(2x)-2p(x+5)), если p(x) = x-10...
Найдите корень уравнения: В ответе запишите наибольший отрицательный корень....