Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 21:35
2739
Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности, угол A равен 47 . Найдите угол С и угол B
2
ответа
Решение:
Так как OC и AO - радиусы окружности с центром в точке O ⇒ AO=OC (точки на окружности равноудалены от центра).
Поскольку AO=OC ⇒ ΔAOC - равнобедренный.
∠CAO=∠ACO=47° (по свойству равнобедренного треугольника).
Сумма углов треугольника равна 180°.
⇒ ∠AOC=180°-(47°+47°)=180°-94°=86°.
Сумма смежных углов равна 180°.
∠AOC смежный с ∠COB ⇒ ∠COB=180°-86°=94°.
Так как CO и OB - радиусы окружности с центром в точке O ⇒ CO=OB (точки на окружности равноудалены от центра).
Поскольку CO=OB ⇒ ΔCOB - равнобедренный.
∠OCB=∠CBO (по свойству равнобедренного треугольника) ⇒ их сумма равна 180°-94°=86°, а каждый из них по 43°.
Также можно было найти ∠OCB и ∠CBO по-другому:
Вписанный угол, который опирается на полуокружность, равен 90°.
∠ACB=90°, так как он вписанный (он же ∠С).
Поскольку ∠ACO=47° ⇒ ∠OCB=90°-47°=43°.
Так как ΔCOB - равнобедренный ⇒ ∠OCB=∠CBO (он же ∠B) =43° (по свойству равнобедренного треугольника).
Ответ: 43°; 90°.
Так как OC и AO - радиусы окружности с центром в точке O ⇒ AO=OC (точки на окружности равноудалены от центра).
Поскольку AO=OC ⇒ ΔAOC - равнобедренный.
∠CAO=∠ACO=47° (по свойству равнобедренного треугольника).
Сумма углов треугольника равна 180°.
⇒ ∠AOC=180°-(47°+47°)=180°-94°=86°.
Сумма смежных углов равна 180°.
∠AOC смежный с ∠COB ⇒ ∠COB=180°-86°=94°.
Так как CO и OB - радиусы окружности с центром в точке O ⇒ CO=OB (точки на окружности равноудалены от центра).
Поскольку CO=OB ⇒ ΔCOB - равнобедренный.
∠OCB=∠CBO (по свойству равнобедренного треугольника) ⇒ их сумма равна 180°-94°=86°, а каждый из них по 43°.
Также можно было найти ∠OCB и ∠CBO по-другому:
Вписанный угол, который опирается на полуокружность, равен 90°.
∠ACB=90°, так как он вписанный (он же ∠С).
Поскольку ∠ACO=47° ⇒ ∠OCB=90°-47°=43°.
Так как ΔCOB - равнобедренный ⇒ ∠OCB=∠CBO (он же ∠B) =43° (по свойству равнобедренного треугольника).
Ответ: 43°; 90°.

0
·
Хороший ответ
4 апреля 2023 21:35
Ответ:
∠C = 90°, ∠B =43°.
Объяснение:
Соедим точку С с точками А и В отрезками прямых - получим вписанный треугольник АВС.
АВ - диаметр описанной окружности, поэтому угол С - вписанный, опирающийся на диаметр. =>
∠C = 90°. => Треугольник АВС - прямоугольный.
∠B =43° по сумме острых углов прямоугольного треугольника, равной 90°.
∠C = 90°, ∠B =43°.
Объяснение:
Соедим точку С с точками А и В отрезками прямых - получим вписанный треугольник АВС.
АВ - диаметр описанной окружности, поэтому угол С - вписанный, опирающийся на диаметр. =>
∠C = 90°. => Треугольник АВС - прямоугольный.
∠B =43° по сумме острых углов прямоугольного треугольника, равной 90°.

0
4 апреля 2023 21:35
Остались вопросы?
Еще вопросы по категории Геометрия
Катет, лежащий против угла 60 градусов?...
в основании прямой треугольной призмы abca1b1c1 лежит равнобедренный треугольник ABC с основанием BC,равным 4,и боковой стороной длиной 5.площадь сече...
Построить сечение тетраэдра...
Боковая сторона равнобедренного треугольника в 2 раза больше основания а медиана проведенная к боковой стороне ровна корень из 6 найдите длину основа...
Построить угол, равный 75 градусов...