Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 01:26
1184
ПОмогите! Две стороны треугольника равны B и C, а биссектриса угла между ними равна l. Найти третью сторону треугольника и найти значение если b=1,c=4,l=1,2
1
ответ
Третью сторону треугольника обозначим f, а отрезки на которые биссектриса делит эту сторону d и m
l^2 = bc - dm
dm = bc - l^2
d/m = b/c (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон)
m = √[(bc - l^2) * b/c]
d = √[(bc - l^2) * c/b]
f = m + d = √[(bc - l^2) * b/c] + √[(bc - l^2) * c/b] = √[(4 - 1,44) * 0,25] + √[(4 - 1,44) * 4] = 0,8 + 3,2 = 4
l^2 = bc - dm
dm = bc - l^2
d/m = b/c (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон)
m = √[(bc - l^2) * b/c]
d = √[(bc - l^2) * c/b]
f = m + d = √[(bc - l^2) * b/c] + √[(bc - l^2) * c/b] = √[(4 - 1,44) * 0,25] + √[(4 - 1,44) * 4] = 0,8 + 3,2 = 4
0
·
Хороший ответ
5 апреля 2023 01:26
Остались вопросы?
Еще вопросы по категории Геометрия
Радиус основания цилиндра равен 5, высота—4. Найдите площадь сечения этого цилиндра плоскостью, параллельной его оси и отстоящей от нее на расстояние...
В треугольнике АВС угол равен 150°, стороны СВ = 7√3, АС = 1 Найдите сторону АВ...
Найдите площадь ромба, если его высота равна 16, а острый угол 30. как решить?...
Найдите объём правильной шестиугольной призмы...
Какой вектор называется разностью двух векторов?Постройте разность двух данных векторов...