Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Используем формулу интегрирования суммы и разности функций:
∫[-2;3] (4x^3-3x^2+2x+1)dx = ∫[-2;3] 4x^3dx - ∫[-2;3] 3x^2dx + ∫[-2;3] 2xdx + ∫[-2;3] 1dx
Вычисляем каждый из интегралов по отдельности:
∫[-2;3] 4x^3dx = [x^4]_(-2)^(3) = 3^4 - (-2)^4 = 81 - 16 = 65
∫[-2;3] 3x^2dx = [x^3]_(-2)^(3) = 3^3 - (-2)^3 = 27 + 8 = 35
∫[-2;3] 2xdx = [x^2]_(-2)^(3) = 3^2 - (-2)^2 = 9 + 4 = 13
∫[-2;3] 1dx = [x]_(-2)^(3) = 3 - (-2) = 5
Таким образом,
∫[-2;3] (4x^3-3x^2+2x+1)dx = 65 - 35 + 13 + 5 = 48
Ответ: 48.
∫[-2;3] (4x^3-3x^2+2x+1)dx = ∫[-2;3] 4x^3dx - ∫[-2;3] 3x^2dx + ∫[-2;3] 2xdx + ∫[-2;3] 1dx
Вычисляем каждый из интегралов по отдельности:
∫[-2;3] 4x^3dx = [x^4]_(-2)^(3) = 3^4 - (-2)^4 = 81 - 16 = 65
∫[-2;3] 3x^2dx = [x^3]_(-2)^(3) = 3^3 - (-2)^3 = 27 + 8 = 35
∫[-2;3] 2xdx = [x^2]_(-2)^(3) = 3^2 - (-2)^2 = 9 + 4 = 13
∫[-2;3] 1dx = [x]_(-2)^(3) = 3 - (-2) = 5
Таким образом,
∫[-2;3] (4x^3-3x^2+2x+1)dx = 65 - 35 + 13 + 5 = 48
Ответ: 48.
0
·
Хороший ответ
5 апреля 2023 03:09
Остались вопросы?
Еще вопросы по категории Математика
два куска одинаковой ткани стоят 360 рублей . в одном из них 5 метрав а в другом -4 метра сколька стоит каждый кусок ткани...
старый будильник каждые 18 часов отстает на 12 мин на сколько минут вперед надо установить время сегодня в 20:00 чтобы завтра проснуться в 8:00...
Какие единицы измерения используются в данном задании?...
Как найти площадь неровной фигуры...
Векторное пространство. Можете пожалуйста объяснить каждое действие в этом решении? AB = B - A = (3/2;-5;-2) - (1/2;-1/2;14) = (1;-9/2;-16) B...