Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 05:24
538
В окружность вписан четырехугольник со сторонами 8 и 15 см а угол между ними равен 60 градусам найдите две другие стороны если одна сторона на 1 см больше другой
1
ответ
Ответ: 7 см, 8 см.
Объяснение: Четырехугольник может быть вписан в окружность только тогда, когда сумма его противоположных углов равна 180°.⇒ Если угол АВС=60°, то угол АDC=120°.
Пусть АВ=8 см, ВС=15 см.
По т.косинусов из ∆ АВС диагональ АВСD АС²=AB²+BC²-2•AB•BC•cos60°
АС²=8²+15²-2•8•15•0,5⇒
AC²=169
В ∆ АDC примем АD=x, DC=х+1.
cos120°=-cos60°=(-0,5)
По т.косинусов АС²=x²+(x+1)²-2•x•(x+1)•(-o,5), откуда
169=3x²+3x+1 ⇒
3x²+3x-168=0
Решив квадратное уравнение, получим х₁=7, х₂=-8 (не подходит). ⇒
АD=x=7 см, CD=7 см+1=8 см
Объяснение: Четырехугольник может быть вписан в окружность только тогда, когда сумма его противоположных углов равна 180°.⇒ Если угол АВС=60°, то угол АDC=120°.
Пусть АВ=8 см, ВС=15 см.
По т.косинусов из ∆ АВС диагональ АВСD АС²=AB²+BC²-2•AB•BC•cos60°
АС²=8²+15²-2•8•15•0,5⇒
AC²=169
В ∆ АDC примем АD=x, DC=х+1.
cos120°=-cos60°=(-0,5)
По т.косинусов АС²=x²+(x+1)²-2•x•(x+1)•(-o,5), откуда
169=3x²+3x+1 ⇒
3x²+3x-168=0
Решив квадратное уравнение, получим х₁=7, х₂=-8 (не подходит). ⇒
АD=x=7 см, CD=7 см+1=8 см

0
·
Хороший ответ
5 апреля 2023 05:24
Остались вопросы?
Еще вопросы по категории Геометрия
боковое ребро правильной 4_ной пирамиды образует угол в 60 градусов с плоскостью основания.найдите площадь поверхности пирамиды если боковое ребро рав...
Один из смежных углов в 9 раз меньше другого. найдите эти углы!...
1.В треугольнике АВС угол С равен 90 градусов, угол А равен 30 градусов,ВС=50 корней из 3.Найдите АС 2.В треугольнике АВС угол С равен 90 градусов,уго...
Имеется торт в виде четырехугольной призмы с размерами 80x80x120 см. Сколько крема потребуется чтобы обмазать торт, если на 1 см2 уходит 50 грамм крем...
В правильной треугольной пирамиде сторона основания равна 6, а длина бокового ребра равна 4. Найдите высоту пирамиды...