Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 05:46
3550
даны два прямоугольных треугольника ∆ABC, ∆ADC, AC - биссектриса, BAC = 35°. Доказать: ∆ABC = ∆ADC. Найти: BCD

1
ответ
Пошаговое объяснение:
Т.к AC - биссектриса, то она делит ∠ BAD пополам, ∠ BAC = ∠ CAD = 35°.
В ∆ABC, ∠ CBA=90°,∠ BAC=35° значит ∠ ACB = 180 - 35 - 90 = 55°.
В ∆ADC, ∠ CDC=90°,∠ CAD=35° значит ∠ ACD = 180 - 35 - 90 = 55°.
Получаем ∆ABC=∆ADC по II признаку, а именно по стороне (сторона АС -общая) и двум прилежащим углам ∠ ACD=∠ACB= 55°,∠ BAC = ∠ CAD = 35°.
Т.к AC - биссектриса, то она делит ∠ BAD пополам, ∠ BAC = ∠ CAD = 35°.
В ∆ABC, ∠ CBA=90°,∠ BAC=35° значит ∠ ACB = 180 - 35 - 90 = 55°.
В ∆ADC, ∠ CDC=90°,∠ CAD=35° значит ∠ ACD = 180 - 35 - 90 = 55°.
Получаем ∆ABC=∆ADC по II признаку, а именно по стороне (сторона АС -общая) и двум прилежащим углам ∠ ACD=∠ACB= 55°,∠ BAC = ∠ CAD = 35°.
0
·
Хороший ответ
5 апреля 2023 05:46
Остались вопросы?
Еще вопросы по категории Математика
Как перевести запись '10 дм см' в сантиметры?...
Какое число является результатом деления 10283 на 9 в задании "10283 16789 9"?...
Какая длина в дециметрах соответствует 100 метрам?...
Что означает выражение '1 9 1 2 log3 4'?...
Какое количество воды нужно для наполнения бассейна размером 10х5 метров, если глубина бассейна составляет 2 метра?...