Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
3 апреля 2023 05:46
2693
даны два прямоугольных треугольника ∆ABC, ∆ADC, AC - биссектриса, BAC = 35°. Доказать: ∆ABC = ∆ADC. Найти: BCD
1
ответ
Пошаговое объяснение:
Т.к AC - биссектриса, то она делит ∠ BAD пополам, ∠ BAC = ∠ CAD = 35°.
В ∆ABC, ∠ CBA=90°,∠ BAC=35° значит ∠ ACB = 180 - 35 - 90 = 55°.
В ∆ADC, ∠ CDC=90°,∠ CAD=35° значит ∠ ACD = 180 - 35 - 90 = 55°.
Получаем ∆ABC=∆ADC по II признаку, а именно по стороне (сторона АС -общая) и двум прилежащим углам ∠ ACD=∠ACB= 55°,∠ BAC = ∠ CAD = 35°.
Т.к AC - биссектриса, то она делит ∠ BAD пополам, ∠ BAC = ∠ CAD = 35°.
В ∆ABC, ∠ CBA=90°,∠ BAC=35° значит ∠ ACB = 180 - 35 - 90 = 55°.
В ∆ADC, ∠ CDC=90°,∠ CAD=35° значит ∠ ACD = 180 - 35 - 90 = 55°.
Получаем ∆ABC=∆ADC по II признаку, а именно по стороне (сторона АС -общая) и двум прилежащим углам ∠ ACD=∠ACB= 55°,∠ BAC = ∠ CAD = 35°.
0
·
Хороший ответ
5 апреля 2023 05:46
Остались вопросы?
Все предметы