Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 06:21
412
Вычислить параметр параболы y2=2px, если известно, что она касается прямой x-2y+5=0
2
ответа
{ y² =2px ; x-2y +5 =0 . система имеет одно решения .
{ y² =2px ; x=2y -5.
y² =2p(2y -5) ;
y² -4py +10p =0 ;
D/4 =0 ⇒(2p)² -10p =0 ;
4p² -10p =0 ;
4p(p -5/2) =0 ;
(если p =0 , y² =0⇔у =0 , что не парабола , а уравнения оси абсцисс).
p =5/2. || y² =2px =2*(5/2)*x =5x ||
ответ : 5/2.
-------
проверка:
{ y² =5x ; x=2y -5.
y² =5(2y -5) ;
(y -5)² = 0 ;
y =5.⇒ x=2y -5= 2*5 -5 =5 .
T(5 ; 5) точка касания .
------
Уравнения касательной функции y² =5x в точке T(5 ; 5).
y -y(5) = y '(5)(x-5) . || k =tqα =y '(5 ||
y = √5*√x (y =5>0) ; y(5) = √5*√5 =5 .
y ' =(√5)/2√x ; y '(5) =(√5)/2√5=1/2 ⇒ y -5=(1/2)(x-5)⇔ 2y -10 =x -5⇔
x -2y +5 =0 ;
{ y² =2px ; x=2y -5.
y² =2p(2y -5) ;
y² -4py +10p =0 ;
D/4 =0 ⇒(2p)² -10p =0 ;
4p² -10p =0 ;
4p(p -5/2) =0 ;
(если p =0 , y² =0⇔у =0 , что не парабола , а уравнения оси абсцисс).
p =5/2. || y² =2px =2*(5/2)*x =5x ||
ответ : 5/2.
-------
проверка:
{ y² =5x ; x=2y -5.
y² =5(2y -5) ;
(y -5)² = 0 ;
y =5.⇒ x=2y -5= 2*5 -5 =5 .
T(5 ; 5) точка касания .
------
Уравнения касательной функции y² =5x в точке T(5 ; 5).
y -y(5) = y '(5)(x-5) . || k =tqα =y '(5 ||
y = √5*√x (y =5>0) ; y(5) = √5*√5 =5 .
y ' =(√5)/2√x ; y '(5) =(√5)/2√5=1/2 ⇒ y -5=(1/2)(x-5)⇔ 2y -10 =x -5⇔
x -2y +5 =0 ;
0
·
Хороший ответ
5 апреля 2023 06:21
Остались вопросы?
Еще вопросы по категории Алгебра
Прямая y=3x+4 является касательной к графику функции y=x^3+4x^2+3x+4. Найти абциссу точки касания. Умоляю помогите...
Сформулируйте три правила нахождения первообразных...
Расстояние от Солнца до Юпитера свет проходит примерно за 43,3 минуты. Найдите приблизительно расстояние от Солнца до Юпитера, ответ округлите до милл...
Сколько будет модуль 5...
Разложите на множители: 1)x²-25 2)16-с² 3)a²-6a+9 4)x²+8x+16 5)a^-8 6)b^+27 (^- это в квадрате)...