Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
3 апреля 2023 09:45
201
Сообщение на тему:" производные высших порядков их применение"
1
ответ
Пусть – некоторая дифференцируемая функция, производная от которой также является дифференцируемой функцией. Производная функции обозначается символическим выражением и называется второй производной (или производной второго порядка) функции :Запись видапозволяет указать в явной форме переменную, по которой выполняется дифференцирование функции. Однако такое обозначение является достаточно громоздким и поэтому обычно используется его сокращенная форма:Эта формула читается как “игрек два штриха равен дэ два игрек по дэ икс дважды”.
Производной n-го порядка от функции называется производная от производной (n - 1)-го порядка:Верхний индекс n, заключенный в круглые скобки, указывает порядок производной. Например, пятую производную от функции y записывают в виде . Для обозначения производных до третьего порядка включительно обычно предпочитают использовать штрихи: или . Если порядок производной , то для его обозначения допускается использование римских цифр, например, Отметим также, что под производной нулевого порядка от функции понимается сама функция :Другими словами, нулевое число преобразований функции означает ее неизменность. Более весомые причины такого соглашения обсуждаются в разделе “Формула Лейбница”. Если функция задана уравнениями в параметрической форме,то для вычисления ее производных высших порядков используется цепочка формул
и так далее. Пусть, например,Тогда
Для нахождения производной n-го порядка неявно заданной функции требуется последовательное вычисление всех ее производных более низкого порядка. Для примера рассмотрим уравнениеопределяющее неявно заданную функцию y(x).
Дважды дифференцируя это равенство, получим систему двух уравненийЕсли из первого уравнения выразить производную y' и подставить полученный результат во второе уравнение, то останется лишь разрешить преобразованное второе уравнение относительно y''.
Производной n-го порядка от функции называется производная от производной (n - 1)-го порядка:Верхний индекс n, заключенный в круглые скобки, указывает порядок производной. Например, пятую производную от функции y записывают в виде . Для обозначения производных до третьего порядка включительно обычно предпочитают использовать штрихи: или . Если порядок производной , то для его обозначения допускается использование римских цифр, например, Отметим также, что под производной нулевого порядка от функции понимается сама функция :Другими словами, нулевое число преобразований функции означает ее неизменность. Более весомые причины такого соглашения обсуждаются в разделе “Формула Лейбница”. Если функция задана уравнениями в параметрической форме,то для вычисления ее производных высших порядков используется цепочка формул
и так далее. Пусть, например,Тогда
Для нахождения производной n-го порядка неявно заданной функции требуется последовательное вычисление всех ее производных более низкого порядка. Для примера рассмотрим уравнениеопределяющее неявно заданную функцию y(x).
Дважды дифференцируя это равенство, получим систему двух уравненийЕсли из первого уравнения выразить производную y' и подставить полученный результат во второе уравнение, то останется лишь разрешить преобразованное второе уравнение относительно y''.
0
·
Хороший ответ
5 апреля 2023 09:45
Остались вопросы?
Еще вопросы по категории Математика
How do you say '1 45' in English?...
. Что означает выражение "взять в оборот"?...
Какое время будет через 10 минут после восьми?...
Сколько дней нужно, чтобы набрать 100000 часов?...
1. Чтобы сложить два отрицательных числа, надо: 1) сложить их модули; 2) поставить перед полученным числом знак "+". 2. Произведение двух отрицательн...
Все предметы