Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для того, чтобы найти угол между плоскостями, нужно найти угол между их нормалями.
Нормаль к плоскости 𝑥 + 𝑦 = 0 имеет координаты (1, 1, 0), так как вектор (1, 1, 0) перпендикулярен плоскости и его координаты соответствуют коэффициентам уравнения плоскости.
Нормаль к плоскости √2𝑥 + √2𝑧 = 0 имеет координаты (√2, 0, √2), так как вектор (√2, 0, √2) перпендикулярен плоскости и его координаты соответствуют коэффициентам уравнения плоскости.
Теперь найдем косинус угла между этими нормалями, используя формулу скалярного произведения:
cos(α) = (1, 1, 0) · (√2, 0, √2) / (|1, 1, 0| * |√2, 0, √2|) = (√2 + 0) / (√2 * √3) = 1 / √3
Таким образом, угол между плоскостями равен arccos(1/√3) ≈ 54.74 градусов.
Нормаль к плоскости 𝑥 + 𝑦 = 0 имеет координаты (1, 1, 0), так как вектор (1, 1, 0) перпендикулярен плоскости и его координаты соответствуют коэффициентам уравнения плоскости.
Нормаль к плоскости √2𝑥 + √2𝑧 = 0 имеет координаты (√2, 0, √2), так как вектор (√2, 0, √2) перпендикулярен плоскости и его координаты соответствуют коэффициентам уравнения плоскости.
Теперь найдем косинус угла между этими нормалями, используя формулу скалярного произведения:
cos(α) = (1, 1, 0) · (√2, 0, √2) / (|1, 1, 0| * |√2, 0, √2|) = (√2 + 0) / (√2 * √3) = 1 / √3
Таким образом, угол между плоскостями равен arccos(1/√3) ≈ 54.74 градусов.
0
·
Хороший ответ
6 апреля 2023 07:39
Остались вопросы?
Еще вопросы по категории Геометрия
Периметр ромба равен 24 а одна из углов равен 30 найдите площадь этого ромба...
Два ребра прямоугольного параллелепипеда,выходящие из одной вершины,равны 2,4.Квадрат диагонали параллелепипеда равен 141.Найдите объем параллелепипед...
Высота AH ромба ABCD делит сторону CD на отрезки DH=12 и CH=1. Найдите высоту ромба...
Докажите что вписанные углы опирающийся на одну и ту же дугу, равны...
Найдите угол между данными сторонами тупоугольного треугольника KMN, если KM = 12 см, MN = 10 см, площадь треугольника равна 30 корней из...