Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
To solve this differential equation, we'll use an integrating factor. First, we'll rearrange the equation to get y' on its own:
xy' + y = x - 1
y' = (x - 1 - y)/x
Now we'll find the integrating factor, which is e^(integral of x/x dx). The integral of 1/x is ln|x|, so the integrating factor is e^(ln|x|) = |x|.
Multiplying both sides of the equation by the integrating factor gives:
|x|y' + |x|y = |x|(x - 1)
Now we can use the product rule to simplify the left-hand side:
d/dx (|x|y) = |x|y' + y
So the equation becomes:
d/dx (|x|y) = |x|(x - 1)
Integrating both sides with respect to x gives:
|x|y = (1/2)x^2 - x + C
where C is the constant of integration. Solving for y gives:
y = (1/2)x - 1 + C/|x|
where C is the constant of integration.
xy' + y = x - 1
y' = (x - 1 - y)/x
Now we'll find the integrating factor, which is e^(integral of x/x dx). The integral of 1/x is ln|x|, so the integrating factor is e^(ln|x|) = |x|.
Multiplying both sides of the equation by the integrating factor gives:
|x|y' + |x|y = |x|(x - 1)
Now we can use the product rule to simplify the left-hand side:
d/dx (|x|y) = |x|y' + y
So the equation becomes:
d/dx (|x|y) = |x|(x - 1)
Integrating both sides with respect to x gives:
|x|y = (1/2)x^2 - x + C
where C is the constant of integration. Solving for y gives:
y = (1/2)x - 1 + C/|x|
where C is the constant of integration.
0
·
Хороший ответ
10 апреля 2023 17:33
Остались вопросы?
Еще вопросы по категории Математика
Какие действия нужно выполнить с числами в данном задании?...
Существует ли треугольник, вокруг которого нельзя описать окружность?...
Чему равно произведение 1000 на 5000?...
10 мм это сколько метров?...
Владелец собирается провести ремонт своей квартиры.На плане изображена предполагаемая расстановка мебели в гостиной после ремонта. Сторона каждой клет...