Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 апреля 2023 16:19
320
Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 6. Найдите объем пирамиды.
1
ответ
Объем пирамиды можно найти по формуле:
V = (1/3) * S * h
где S - площадь основания, h - высота пирамиды.
Площадь основания можно найти как произведение длины и ширины прямоугольника:
S = a * b
где a и b - длина и ширина прямоугольника.
Так как одна боковая грань перпендикулярна плоскости основания, то она является прямоугольным треугольником со сторонами a и h. Поэтому площадь боковой грани равна:
Sб = (1/2) * a * h
Так как у пирамиды три боковые грани, то общая площадь боковых граней равна:
Sбок = 3 * Sб = 3 * (1/2) * a * h = 3ah/2
Теперь можем найти площадь основания:
S = a * b = (Sбок * 2) / 3 = ah/2
И подставить значения в формулу для объема:
V = (1/3) * S * h = (1/3) * (ah/2) * 6 = ah
Осталось найти значение a. Рассмотрим прямоугольный треугольник со сторонами a, b и h:
[треугольник]
Угол между боковой гранью и плоскостью основания равен 60 градусов, поэтому угол между стороной a и высотой h равен 30 градусам. Также из треугольника видно, что:
b = a * tg(60) = a * sqrt(3)
h = b * tg(30) = a * sqrt(3) * 1/√3 = a
Подставляем последнее выражение в формулу для объема:
V = ah = a^2 = (b/sqrt(3))^2 = b^2/3 = 36/3 = 12
Ответ: объем пирамиды равен 12 кубическим единицам.
V = (1/3) * S * h
где S - площадь основания, h - высота пирамиды.
Площадь основания можно найти как произведение длины и ширины прямоугольника:
S = a * b
где a и b - длина и ширина прямоугольника.
Так как одна боковая грань перпендикулярна плоскости основания, то она является прямоугольным треугольником со сторонами a и h. Поэтому площадь боковой грани равна:
Sб = (1/2) * a * h
Так как у пирамиды три боковые грани, то общая площадь боковых граней равна:
Sбок = 3 * Sб = 3 * (1/2) * a * h = 3ah/2
Теперь можем найти площадь основания:
S = a * b = (Sбок * 2) / 3 = ah/2
И подставить значения в формулу для объема:
V = (1/3) * S * h = (1/3) * (ah/2) * 6 = ah
Осталось найти значение a. Рассмотрим прямоугольный треугольник со сторонами a, b и h:
[треугольник]
Угол между боковой гранью и плоскостью основания равен 60 градусов, поэтому угол между стороной a и высотой h равен 30 градусам. Также из треугольника видно, что:
b = a * tg(60) = a * sqrt(3)
h = b * tg(30) = a * sqrt(3) * 1/√3 = a
Подставляем последнее выражение в формулу для объема:
V = ah = a^2 = (b/sqrt(3))^2 = b^2/3 = 36/3 = 12
Ответ: объем пирамиды равен 12 кубическим единицам.
0
·
Хороший ответ
26 апреля 2023 16:36
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите угол между данными сторонами тупоугольного треугольника KMN, если KM = 12 см, MN = 10 см, площадь треугольника равна 30 корней из...
Что значит обоснуйте ответ...
Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если высота ее проход...
Периметр треугольника равен 140, одна из сторон равна 56, а радиус вписанной в него окружности равен 9. Найдите,пожалуйста, площадь этого треугольника...
Про трапецию 𝐾𝑀𝑁𝑃 с основаниями 𝐾𝑃 и 𝑀𝑁 известно, что 𝐾𝑀 = 2,𝐾𝑃 = √3,∠𝐾𝑀𝑁 = 150°. Найдите диагональ 𝑀𝑃 трапеции 𝐾𝑀𝑁𝑃. Пр...