Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
1 мая 2023 15:52
299
- Найдите множество значений свободной переменной, при которых будет
- истинным предикат:
- a. ∀𝑥(𝑥+|𝑦|>2)→(𝑥+𝑦>3). b. ∀𝑦:𝑥2−𝑦2=1;
- c. ∃𝑥(𝑎2−1)𝑥=𝑎+1.
1
ответ
A. Для того, чтобы предикат был истинным, необходимо, чтобы условие в импликации также было истинным. То есть, если ∀𝑥(𝑥+|𝑦|>2), то (𝑥+𝑦>3). Рассмотрим два случая:
1. Если 𝑦≥0, то |𝑦|=𝑦, и условие из предиката будет выполнено для любого 𝑥>2−𝑦. Тогда, чтобы импликация была истинной, необходимо, чтобы 𝑥+𝑦>3, то есть 𝑥>3−𝑦.
2. Если 𝑦<0, то |𝑦|=−𝑦, и условие из предиката будет выполнено для любого 𝑥>2+𝑦. Тогда, чтобы импликация была истинной, необходимо, чтобы 𝑥+𝑦>3, то есть 𝑥>3+𝑦.
Таким образом, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно объединению двух интервалов: (2−𝑦,3−𝑦) и (2+𝑦,3+𝑦).
b. Равенство 𝑥2−𝑦2=1 можно переписать как (𝑥+𝑦)(𝑥−𝑦)=1. Так как мы рассматриваем все возможные значения 𝑦, то нужно рассмотреть два случая:
1. Если 𝑦=0, то (𝑥+𝑦)(𝑥−𝑦)=𝑥2=1, то есть 𝑥=±1.
2. Если 𝑦≠0, то (𝑥+𝑦)(𝑥−𝑦)=1. Так как произведение двух чисел равно 1 только тогда, когда оба числа равны 1 или оба числа равны −1, то получаем два уравнения:
- 𝑥+𝑦=1, 𝑥−𝑦=1, откуда 𝑥=1, 𝑦=0.
- 𝑥+𝑦=−1, 𝑥−𝑦=−1, откуда 𝑥=−1, 𝑦=0.
Таким образом, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно {−1,1}.
c. Условие предиката можно переписать как (𝑎2−1)𝑥−(𝑎+1)=0. Это уравнение имеет решение 𝑥=(𝑎+1)/(𝑎2−1) только тогда, когда знаменатель отличен от нуля. Значит, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно множеству всех 𝑥, для которых 𝑎2−1≠0, то есть 𝑎≠±1.
1. Если 𝑦≥0, то |𝑦|=𝑦, и условие из предиката будет выполнено для любого 𝑥>2−𝑦. Тогда, чтобы импликация была истинной, необходимо, чтобы 𝑥+𝑦>3, то есть 𝑥>3−𝑦.
2. Если 𝑦<0, то |𝑦|=−𝑦, и условие из предиката будет выполнено для любого 𝑥>2+𝑦. Тогда, чтобы импликация была истинной, необходимо, чтобы 𝑥+𝑦>3, то есть 𝑥>3+𝑦.
Таким образом, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно объединению двух интервалов: (2−𝑦,3−𝑦) и (2+𝑦,3+𝑦).
b. Равенство 𝑥2−𝑦2=1 можно переписать как (𝑥+𝑦)(𝑥−𝑦)=1. Так как мы рассматриваем все возможные значения 𝑦, то нужно рассмотреть два случая:
1. Если 𝑦=0, то (𝑥+𝑦)(𝑥−𝑦)=𝑥2=1, то есть 𝑥=±1.
2. Если 𝑦≠0, то (𝑥+𝑦)(𝑥−𝑦)=1. Так как произведение двух чисел равно 1 только тогда, когда оба числа равны 1 или оба числа равны −1, то получаем два уравнения:
- 𝑥+𝑦=1, 𝑥−𝑦=1, откуда 𝑥=1, 𝑦=0.
- 𝑥+𝑦=−1, 𝑥−𝑦=−1, откуда 𝑥=−1, 𝑦=0.
Таким образом, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно {−1,1}.
c. Условие предиката можно переписать как (𝑎2−1)𝑥−(𝑎+1)=0. Это уравнение имеет решение 𝑥=(𝑎+1)/(𝑎2−1) только тогда, когда знаменатель отличен от нуля. Значит, множество значений свободной переменной 𝑥, при которых предикат будет истинным, равно множеству всех 𝑥, для которых 𝑎2−1≠0, то есть 𝑎≠±1.
0
·
Хороший ответ
1 мая 2023 16:03
Остались вопросы?
Еще вопросы по категории Математика
What is the molecular formula of 1,1-dichloropropane and what is its reaction with KOH?...
Какие инструменты использовал ремесленник?...
Определение формулы линейной функции по данному графику ...
Какие деепричастия можно сформировать от глагола 'ходить'?...
ширина прямоугольного параллелепипеда равна 4 см, что состовляет 8/15 его длины , а высота состовляет 40% длины. Вычислите объём параллелепипеда ...