Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
5 мая 2023 21:56
337
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа А формула
ДЕЛ(x, 3) \/ ((x ∈ B) → (2x + A ≥ 74))
тождественно истинна при любом натуральном значении переменной x, если дан отрезок B = [20; 55]?
1
ответ
Для решения задачи нужно рассмотреть два случая:
1. x кратно 3. В этом случае утверждение DEL(x, 3) истинно, а значит вся формула тождественно истинна при любом A.
2. x не кратно 3. В этом случае утверждение DEL(x, 3) ложно, а значит для тождественной истинности формулы необходимо, чтобы (x ∈ B) → (2x + A ≥ 74). Рассмотрим два подслучая:
- Если x ≤ 20, то выражение (x ∈ B) ложно, а значит условие (x ∈ B) → (2x + A ≥ 74) тождественно истинно при любом A.
- Если x > 20, то выражение (x ∈ B) истинно, а значит условие (x ∈ B) → (2x + A ≥ 74) эквивалентно неравенству 2x + A ≥ 74. Так как отрезок B = [20; 55], то x ≤ 55, а значит 2x ≤ 110. Отсюда следует, что A ≥ 74 - 2x ≥ 74 - 110 = -36. Таким образом, для тождественной истинности формулы при любом x > 20 необходимо, чтобы A было не меньше -36.
Итак, формула тождественно истинна при любом A, если A ≥ -36. Наименьшее натуральное число, удовлетворяющее этому условию, равно 1 - 36 = -35. Ответ: A = -35.
1. x кратно 3. В этом случае утверждение DEL(x, 3) истинно, а значит вся формула тождественно истинна при любом A.
2. x не кратно 3. В этом случае утверждение DEL(x, 3) ложно, а значит для тождественной истинности формулы необходимо, чтобы (x ∈ B) → (2x + A ≥ 74). Рассмотрим два подслучая:
- Если x ≤ 20, то выражение (x ∈ B) ложно, а значит условие (x ∈ B) → (2x + A ≥ 74) тождественно истинно при любом A.
- Если x > 20, то выражение (x ∈ B) истинно, а значит условие (x ∈ B) → (2x + A ≥ 74) эквивалентно неравенству 2x + A ≥ 74. Так как отрезок B = [20; 55], то x ≤ 55, а значит 2x ≤ 110. Отсюда следует, что A ≥ 74 - 2x ≥ 74 - 110 = -36. Таким образом, для тождественной истинности формулы при любом x > 20 необходимо, чтобы A было не меньше -36.
Итак, формула тождественно истинна при любом A, если A ≥ -36. Наименьшее натуральное число, удовлетворяющее этому условию, равно 1 - 36 = -35. Ответ: A = -35.
0
·
Хороший ответ
5 мая 2023 22:00
Остались вопросы?
Еще вопросы по категории Информатика
Составить алгоритм на языке блок-схем для решения следующей задачи: определить, является ли прямоугольник с заданными сторонами квадратом....
10 прокомментируйте запись Var a, b:real; c:integer;...
s = 'Андрей и Василий - братья' t = s.count('а') Определите значение переменной t после выполнения данного фрагмента программы. ...
Выполните вычитание двоичных чисел a)1011-101,11 b)1101,101-1001,01...
В каком из условных операторов допущена синтаксическая ошибка? 1. if B = then Writeln ('Деление на ноль невозможно'); 2. if a > b then max:= a els...
Все предметы