Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
9 мая 2023 05:09
389
доказать, что куб любого натурального числа либо делится на 9, либо, будучи увеличенным или уменьшенным на 1, делится на 9
1
ответ
Для доказательства данного утверждения воспользуемся методом математической индукции.
Базовый шаг:
При n = 1 куб любого натурального числа равен 1, что не делится на 9. Однако, увеличенное или уменьшенное на 1, число 2 делится на 9 (2^3 = 8, 3^3 = 27).
Шаг индукции:
Пусть утверждение верно для всех натуральных чисел меньше n. Докажем, что оно верно и для n.
Рассмотрим три случая:
1) Если n кратно 3, то n^3 кратно 27, что делится на 9.
2) Если n = 3k + 1, то n^3 = 27k^3 + 27k^2 + 9k + 1. Первые три слагаемых делятся на 9, а остаток равен 1. Таким образом, увеличенное на 1 число 3k + 2 будет кратно 3 и не будет кратно 9, а уменьшенное на 1 число 3k будет кратно 3 и не будет кратно 9.
3) Если n = 3k + 2, то n^3 = 27k^3 + 54k^2 + 36k + 8. Первые три слагаемых делятся на 9, а остаток равен 8. Таким образом, увеличенное на 1 число 3k + 3 будет кратно 3 и не будет кратно 9, а уменьшенное на 1 число 3k + 1 будет кратно 3 и не будет кратно 9.
Таким образом, мы доказали, что куб любого натурального числа либо делится на 9, либо, будучи увеличенным или уменьшенным на 1, делится на 9.
Базовый шаг:
При n = 1 куб любого натурального числа равен 1, что не делится на 9. Однако, увеличенное или уменьшенное на 1, число 2 делится на 9 (2^3 = 8, 3^3 = 27).
Шаг индукции:
Пусть утверждение верно для всех натуральных чисел меньше n. Докажем, что оно верно и для n.
Рассмотрим три случая:
1) Если n кратно 3, то n^3 кратно 27, что делится на 9.
2) Если n = 3k + 1, то n^3 = 27k^3 + 27k^2 + 9k + 1. Первые три слагаемых делятся на 9, а остаток равен 1. Таким образом, увеличенное на 1 число 3k + 2 будет кратно 3 и не будет кратно 9, а уменьшенное на 1 число 3k будет кратно 3 и не будет кратно 9.
3) Если n = 3k + 2, то n^3 = 27k^3 + 54k^2 + 36k + 8. Первые три слагаемых делятся на 9, а остаток равен 8. Таким образом, увеличенное на 1 число 3k + 3 будет кратно 3 и не будет кратно 9, а уменьшенное на 1 число 3k + 1 будет кратно 3 и не будет кратно 9.
Таким образом, мы доказали, что куб любого натурального числа либо делится на 9, либо, будучи увеличенным или уменьшенным на 1, делится на 9.
1
·
Хороший ответ
9 мая 2023 05:09
Остались вопросы?
Еще вопросы по категории Математика
Две пятые отложенных для украшения пирога ягод нужно залить желе. Сколько вишенок требуется для этого...
Раскрасить надо шестую часть числа всех ласточек Что такое 6 часть...
На фабрику привезли 120 м. Шёлка,льна в 3 раза больше,чем шёлка,а хлопка в 4 раза больше,чем шёлка.Для изготовления постельных комплектов израсходовал...
Какой формат имеет задание '1 i 6'?...
Навеску смеси оксида меди(II) и песка прокалили с избытком оксида кальция. Полученный остаток обработали избытком азотной кислоты и получили 7,8 г н...