Лучшие помощники
- Megamozg 2205 б
 - Matalya1 1800 б
 - DevAdmin 1720 б
 - arkasha_bortnikov 900 б
 - Dwayne_Johnson 870 б
 
9 мая 2023 05:29
 704
 доказать, что при любом натуральном n,(6^2n+3^(n+2)+3^n):11
                                            1
                                            ответ
                                        
Для доказательства данного утверждения воспользуемся свойствами арифметики остатков.
Заметим, что 6 ≡ -5 (mod 11), так как 6 - (-5) = 11, а 11 делится на 11 без остатка. Тогда 6^2 ≡ (-5)^2 ≡ 25 ≡ 3 (mod 11).
Аналогично, 3 ≡ -8 (mod 11), так как 3 + 8 = 11, а 11 делится на 11 без остатка. Тогда 3^n ≡ (-8)^n (mod 11).
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ 3 + (-8)^(n+2) + (-8)^n (mod 11).
Заметим, что (-8)^2 ≡ 64 ≡ 7 (mod 11), а (-8)^3 ≡ -512 ≡ -1 (mod 11). Тогда:
(-8)^n ≡ (-8)^(n-3) * (-8)^3 ≡ (-8)^(n-3) * (-1) ≡ -(-8)^(n-3) (mod 11).
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ 3 + (-8)^(n+2) + (-8)^n ≡ 3 - 7 + (-1)^n * (-8)^(n-3) ≡ -4 + (-1)^n * (-8)^(n-3) (mod 11).
Но заметим, что (-8)^(n-3) всегда равно либо 1, либо -1, в зависимости от четности n-3. Тогда (-1)^n * (-8)^(n-3) всегда равно либо 1, либо -1.
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ -4 + (-1)^n * (-8)^(n-3) ≡ -4 + 1 или -4 + (-1) (mod 11).
В обоих случаях получаем, что
6^(2n) + 3^(n+2) + 3^n ≡ -3 ≡ 8 (mod 11).
Таким образом, мы доказали, что при любом натуральном n,
(6^(2n) + 3^(n+2) + 3^n) делится на 11 с остатком 8.
 Заметим, что 6 ≡ -5 (mod 11), так как 6 - (-5) = 11, а 11 делится на 11 без остатка. Тогда 6^2 ≡ (-5)^2 ≡ 25 ≡ 3 (mod 11).
Аналогично, 3 ≡ -8 (mod 11), так как 3 + 8 = 11, а 11 делится на 11 без остатка. Тогда 3^n ≡ (-8)^n (mod 11).
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ 3 + (-8)^(n+2) + (-8)^n (mod 11).
Заметим, что (-8)^2 ≡ 64 ≡ 7 (mod 11), а (-8)^3 ≡ -512 ≡ -1 (mod 11). Тогда:
(-8)^n ≡ (-8)^(n-3) * (-8)^3 ≡ (-8)^(n-3) * (-1) ≡ -(-8)^(n-3) (mod 11).
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ 3 + (-8)^(n+2) + (-8)^n ≡ 3 - 7 + (-1)^n * (-8)^(n-3) ≡ -4 + (-1)^n * (-8)^(n-3) (mod 11).
Но заметим, что (-8)^(n-3) всегда равно либо 1, либо -1, в зависимости от четности n-3. Тогда (-1)^n * (-8)^(n-3) всегда равно либо 1, либо -1.
Таким образом,
6^(2n) + 3^(n+2) + 3^n ≡ -4 + (-1)^n * (-8)^(n-3) ≡ -4 + 1 или -4 + (-1) (mod 11).
В обоих случаях получаем, что
6^(2n) + 3^(n+2) + 3^n ≡ -3 ≡ 8 (mod 11).
Таким образом, мы доказали, что при любом натуральном n,
(6^(2n) + 3^(n+2) + 3^n) делится на 11 с остатком 8.
0
 ·
 Хороший ответ
9 мая 2023 05:30
Остались вопросы?
 Еще вопросы по категории Математика
 
                                    Сколько квадратных метров в 0.15 га?...
                                
                                    Каков результат сложения чисел 1000 и 500?...
                                
                                    Какое число получится, если разделить 90 на 10?...
                                
                                    1)решите уравнение 19*4(в степени х)-5*2(в степени х+2)+1=0 2)Укажите корни этого уравнения[-5;-4]...
                                
                                    Найдите значение выражения 252*(69+136)-6588:27=?                       ПО ДЕЙСТВИЯМ ПРОШУ ПОМОЧ...