Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
9 мая 2023 05:41
110
1
ответ
А) 19/37:
$19/37 = 0.513513...$
$0.513513... = 0 + \cfrac{1}{1/0.513513...} = 0 + \cfrac{1}{1.948717...}$
$1.948717... = 1 + \cfrac{1}{1/0.948717...} = 1 + \cfrac{1}{1.052631...}$
$1.052631... = 1 + \cfrac{1}{1/0.052631...} = 1 + \cfrac{1}{18.999...}$
Таким образом, $19/37 = [0; 1, 1, 19]$.
б) 49/30:
$49/30 = 1.633333...$
$1.633333... = 1 + \cfrac{1}{1/0.633333...} = 1 + \cfrac{1}{1.578947...}$
$1.578947... = 1 + \cfrac{1}{1/0.578947...} = 1 + \cfrac{1}{1.727272...}$
$1.727272... = 1 + \cfrac{1}{1/0.727272...} = 1 + \cfrac{1}{1.375}$
Таким образом, $49/30 = [1; 1, 1, 1, 2]$.
в) 81/71:
$81/71 = 1.140845...$
$1.140845... = 1 + \cfrac{1}{1/0.140845...} = 1 + \cfrac{1}{7.086957...}$
$7.086957... = 7 + \cfrac{1}{1/0.086957...} = 7 + \cfrac{1}{11.5}$
Таким образом, $81/71 = [1; 7, 11]$.
$19/37 = 0.513513...$
$0.513513... = 0 + \cfrac{1}{1/0.513513...} = 0 + \cfrac{1}{1.948717...}$
$1.948717... = 1 + \cfrac{1}{1/0.948717...} = 1 + \cfrac{1}{1.052631...}$
$1.052631... = 1 + \cfrac{1}{1/0.052631...} = 1 + \cfrac{1}{18.999...}$
Таким образом, $19/37 = [0; 1, 1, 19]$.
б) 49/30:
$49/30 = 1.633333...$
$1.633333... = 1 + \cfrac{1}{1/0.633333...} = 1 + \cfrac{1}{1.578947...}$
$1.578947... = 1 + \cfrac{1}{1/0.578947...} = 1 + \cfrac{1}{1.727272...}$
$1.727272... = 1 + \cfrac{1}{1/0.727272...} = 1 + \cfrac{1}{1.375}$
Таким образом, $49/30 = [1; 1, 1, 1, 2]$.
в) 81/71:
$81/71 = 1.140845...$
$1.140845... = 1 + \cfrac{1}{1/0.140845...} = 1 + \cfrac{1}{7.086957...}$
$7.086957... = 7 + \cfrac{1}{1/0.086957...} = 7 + \cfrac{1}{11.5}$
Таким образом, $81/71 = [1; 7, 11]$.
0
·
Хороший ответ
9 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Математика
Все предметы