Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
11 мая 2023 17:01
296
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD = 39.
1
ответ
Для решения задачи нам понадобится знание тригонометрических функций. Обозначим боковую сторону AB через х.
Из угла ABC мы можем найти угол BAC, так как они дополнительны (угол BAC + угол ABC = 180°).
Угол BAC = 180° - 60° = 120°.
Теперь мы можем найти высоту трапеции, опущенную на основание AB, используя тригонометрическую функцию синуса:
sin(60°) = h / x
h = x * sin(60°)
Из угла BCD мы можем найти угол BDC, так как они смежные (угол BDC = 180° - угол BCD = 45°).
Теперь мы можем найти длину диагонали BD, используя теорему косинусов:
BD^2 = CD^2 + h^2 - 2 * CD * h * cos(BDC)
BD^2 = 39^2 + (x * sin(60°))^2 - 2 * 39 * x * sin(60°) * cos(45°)
BD^2 = 1521 + 0.75x^2 - 546.75x
Также мы можем выразить BD через х и длину оснований трапеции:
BD = AB + CD
BD = x + 39
Теперь мы можем приравнять два выражения для BD и решить уравнение относительно х:
x + 39 = sqrt(1521 + 0.75x^2 - 546.75x)
Возводим обе части уравнения в квадрат:
x^2 + 78x + 1521 = 1521 + 0.75x^2 - 546.75x
Переносим все члены с x в одну сторону:
0.25x^2 - 624.75x = 0
Делим обе части уравнения на 0.25x:
x - 2499 = 0
x = 2499
Ответ: боковая сторона AB трапеции ABCD равна 2499.
Из угла ABC мы можем найти угол BAC, так как они дополнительны (угол BAC + угол ABC = 180°).
Угол BAC = 180° - 60° = 120°.
Теперь мы можем найти высоту трапеции, опущенную на основание AB, используя тригонометрическую функцию синуса:
sin(60°) = h / x
h = x * sin(60°)
Из угла BCD мы можем найти угол BDC, так как они смежные (угол BDC = 180° - угол BCD = 45°).
Теперь мы можем найти длину диагонали BD, используя теорему косинусов:
BD^2 = CD^2 + h^2 - 2 * CD * h * cos(BDC)
BD^2 = 39^2 + (x * sin(60°))^2 - 2 * 39 * x * sin(60°) * cos(45°)
BD^2 = 1521 + 0.75x^2 - 546.75x
Также мы можем выразить BD через х и длину оснований трапеции:
BD = AB + CD
BD = x + 39
Теперь мы можем приравнять два выражения для BD и решить уравнение относительно х:
x + 39 = sqrt(1521 + 0.75x^2 - 546.75x)
Возводим обе части уравнения в квадрат:
x^2 + 78x + 1521 = 1521 + 0.75x^2 - 546.75x
Переносим все члены с x в одну сторону:
0.25x^2 - 624.75x = 0
Делим обе части уравнения на 0.25x:
x - 2499 = 0
x = 2499
Ответ: боковая сторона AB трапеции ABCD равна 2499.
0
·
Хороший ответ
11 мая 2023 17:03
Остались вопросы?
Еще вопросы по категории Математика
Что описывает задание '10 м 85 дм 5м 7дм'?...
найдите расстояние от бака с водой до бани)расстояние между двумя ближайшими точками по прямой)( бак - 5, баня - 4)...
Вычислите 1)0,5 в квадрате 2)0,3 в кубе 3)0,008 в квадрате 4)0,011 в квадрате...
Найди площадь фигуры, ограниченной параболойу = Х + 28 - 2 и прямой, которая пересекает параболу в точках (-4; -6) и (2; 3)....
В треугольнике АВС известно, что периметр равен 88 см ВС=35см СА=22 см Найдите сторону АВ...