Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для того, чтобы доказать, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень, нужно показать, что его дискриминант D неотрицательный:
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
0
·
Хороший ответ
19 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Алгебра
Найти область определения функции...
Вычислите: 1) cos 225° 2) tg 330°...
Нужен развернутый ответ срочная помощь!!!...
Logx (x-2)*logx (x+2) <=0...
На изготовление 99 деталей первый рабочий тратит на 2 часа меньше, чем второй рабочий на изготовление 110 таких же деталей. Известно, что первый рабоч...