Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для того, чтобы доказать, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень, нужно показать, что его дискриминант D неотрицательный:
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
0
·
Хороший ответ
19 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Алгебра
Значение выражения arccos1/2+arcsin1/2...
Корень из 676 корень из 144 корень из 121...
Какое из следующих утверждений верно? 1. Две прямые, параллельные третьей прямой, перпендикулярны. 2. Треугольник со сторонами 1, 2, 4 существует. 3....
из множества натуральных чисел от 28 до 55 включая 28 и 55 наудачу выбирают одно число .Какова вероятность того что оно делится на 2...
Решите уравнение x-5/2x-7= x-5/x-8...