Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для того, чтобы доказать, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень, нужно показать, что его дискриминант D неотрицательный:
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
0
·
Хороший ответ
19 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Алгебра
1.вынести множитель из под знака корня а)0,01√ 800 2.внести множитель под знак корня а)3√ 5а б)-10√ 0,2в 3.сравните значения выражений а)1\3√ 54 и 3 б...
В доме, в котором живет Оля, 9 этажей и несколько подъездов. На каждом этаже находится по 3 квартиры. Оля живет в квартире №82. В каком подъезде живет...
Какими буквами обозначается скорость , растояние и время...
Найти критические точки функции: y = x - x2...
1)найдите сумму геометрической прогрессии -16;8;-4;... 2)сумма геометрической прогрессии (Bn) равна 84, знаменатель прогрессии равен 1/4. Найдите перв...