Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для того, чтобы доказать, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень, нужно показать, что его дискриминант D неотрицательный:
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
0
·
Хороший ответ
19 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Алгебра
Ребята, как определить ветви параболы вверх или вниз? Как это определить? Вверх или вниз... Объясните. не понимаю....
Решите уравнение (х+10)^2=(5-х)^2...
Помогите...
Последовательность задана условиями b1=6,b n+1=-3/bn. Найдите b6...
Найдите допустимые значения переменной в выражении: а) 5у-8/11 , б) 25/у-9 , в) у^2+1/у^2-2у Пожалуйста ....