Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для того, чтобы доказать, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень, нужно показать, что его дискриминант D неотрицательный:
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
D = p2 – 4(p – 1) = p2 – 4p + 4.
Выражение D является квадратным трехчленом от переменной p. Его график представляет собой параболу, которая направлена вверх и пересекает ось ординат в точке (0, 4).
Таким образом, D ≥ 0 при любом значении p, что означает, что уравнение x2 + px + p – 1 = 0 имеет хотя бы один корень.
0
·
Хороший ответ
19 мая 2023 05:42
Остались вопросы?
Еще вопросы по категории Алгебра
Найти знаменатель геометрической прогрессии, у которой отношение десятого члена к восьмому в 5 раз больше отношения одиннадцатого члена к десятому....
A1)запишите в виде выражения:частное от деления суммы чисел 37 и 19 на 8,A2Какое значение принимает сумма x+y,если x=-1,3,y=-2,7 .A3) какое значение в...
постройте график функций y=x2. Используя этот график постройте график функций: y=x2-3, y=x2+4, y=(x-5)2, y=(x+2)2, y=(x-1)2+2...
Определите степень уравнений: a) 2y2 – 3x3 + 4x = 2; b) (a + 3 a2)(-b2 + 4a) = a; c) 5b2 - 3b2 a3 + 2a3 = 0; d) x(x2 + 4xy + 1)= (2y – x2)2....
После постройки дома денег на внутреннюю отделку осталось меньше, чем планировалось первоначально, поэтому пришлось экономить. В гостиной и столовой п...