Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
23 мая 2023 00:02
332
Физический маятник представляет собой однородный тонкий диск радиусом R = 0.1 м, массой m = 1.5 кг, который совершает колебания в вертикальной плоскости вокруг горизонтальной оси, проходящей на расстоянии x = 0.04м от центра диска. Максимальная кинетическая энергия Wmax = 3 мДж. Найти максимальную скорость центра диска в процессе колебаний. Трением в оси и сопротивлением воздуха пренебречь.
1
ответ
Максимальная кинетическая энергия системы равна сумме кинетических энергий движения центра масс и вращения вокруг оси. Так как маятник совершает колебания в вертикальной плоскости, то движение центра масс является гармоническим, а его максимальная скорость будет равна амплитуде колебаний, умноженной на частоту колебаний.
Известно, что максимальная кинетическая энергия Wmax = 3 мДж. При этом кинетическая энергия вращения вокруг оси равна:
Ek = Iω² / 2,
где I - момент инерции диска относительно оси вращения, а ω - угловая скорость вращения.
Момент инерции диска относительно оси, проходящей через его центр масс, равен:
I = mR² / 2.
Таким образом, кинетическая энергия вращения будет равна:
Ek = mR²ω² / 4.
Суммируя кинетические энергии, получим:
Wmax = mv² / 2 + mR²ω² / 4,
где v - максимальная скорость центра масс.
Выразим из этого уравнения максимальную скорость центра масс:
v = sqrt(2Wmax / m - R²ω² / 2).
Частота колебаний определяется формулой:
ω = sqrt(gx / R²),
где g - ускорение свободного падения, x - расстояние от оси вращения до центра масс.
Подставляя значение g и x, получим:
ω = sqrt(9.81 * 0.04 / 0.1²) ≈ 6.26 рад/с.
Теперь можем вычислить максимальную скорость центра масс:
v = sqrt(2 * 3 * 10^-3 / 1.5 - 0.1² * 6.26² / 2) ≈ 0.36 м/с.
Ответ: максимальная скорость центра диска в процессе колебаний составляет около 0.36 м/с.
Известно, что максимальная кинетическая энергия Wmax = 3 мДж. При этом кинетическая энергия вращения вокруг оси равна:
Ek = Iω² / 2,
где I - момент инерции диска относительно оси вращения, а ω - угловая скорость вращения.
Момент инерции диска относительно оси, проходящей через его центр масс, равен:
I = mR² / 2.
Таким образом, кинетическая энергия вращения будет равна:
Ek = mR²ω² / 4.
Суммируя кинетические энергии, получим:
Wmax = mv² / 2 + mR²ω² / 4,
где v - максимальная скорость центра масс.
Выразим из этого уравнения максимальную скорость центра масс:
v = sqrt(2Wmax / m - R²ω² / 2).
Частота колебаний определяется формулой:
ω = sqrt(gx / R²),
где g - ускорение свободного падения, x - расстояние от оси вращения до центра масс.
Подставляя значение g и x, получим:
ω = sqrt(9.81 * 0.04 / 0.1²) ≈ 6.26 рад/с.
Теперь можем вычислить максимальную скорость центра масс:
v = sqrt(2 * 3 * 10^-3 / 1.5 - 0.1² * 6.26² / 2) ≈ 0.36 м/с.
Ответ: максимальная скорость центра диска в процессе колебаний составляет около 0.36 м/с.
0
·
Хороший ответ
23 мая 2023 00:03
Остались вопросы?
Еще вопросы по категории Физика
Определите массу груза, который нужно сбросить с аэростата массой 1100 кг, движущегося равномерно вниз, чтобы аэростат стал двигаться с такой же по мо...
Что такое U в физике?...
Для равномерного окрашивания деталей машины капли краски заряжают отрицательно, а сами детали – положительно. Разноименные заряды притягиваются друг к...
изменилась ли масса воздуха в цилиндре под поршнем,если поршень вдвинули в цилиндр и газ стал занимать объем в два раза меньше первоначального?...
Что называют простым механизмом...
Все предметы