Лучшие помощники
Для решения задачи нам нужно использовать закон Снелла-Декарта:

n1 * sin(угол 1) = n2 * sin(угол 2)

где n1 и n2 - коэффициенты преломления сред, а угол 2 - угол преломления.

Первым делом найдем угол преломления:

sin(угол 2) = (n1 * sin(угол 1)) / n2
sin(угол 2) = (1 * sin(60)) / n2
sin(угол 2) = 0.866 / n2
угол 2 = arcsin(0.866 / n2)

Теперь нам нужно найти коэффициент преломления n2. Для этого воспользуемся формулой для определения фокусного расстояния линзы:

1 / ф = (n2 - n1) * ((1 / R1) - (1 / R2))

где R1 и R2 - радиусы кривизны поверхностей линзы, а ф - фокусное расстояние.

Для простоты будем считать, что линза имеет сферические поверхности с радиусом кривизны R = 15 см (половина высоты Н).

1 / ф = (n2 - 1) * ((1 / R) - (1 / (-R)))
1 / ф = (n2 - 1) * ((2 / R))
ф = R / (2 * (n2 - 1))

Теперь найдем фокусное расстояние линзы. Для этого воспользуемся формулой для определения фокусного расстояния линзы:

L / ф = (n2 - 1) * (1 / R1 + 1 / R2)

L / ф = (n2 - 1) * (2 / R)
ф = L * R / (2 * (n2 - 1))

Сравнивая два выражения для фокусного расстояния, получаем:

R / (2 * (n2 - 1)) = L * R / (2 * (n2 - 1))
1 = L / (n2 - 1)
n2 - 1 = L
n2 = L + 1

Таким образом, коэффициент преломления равен:

n2 = L + 1 = 3 + 1 = 4.
0
·
Хороший ответ
25 мая 2023 12:42
Остались вопросы?
Найти нужный