Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Для нахождения производной данной функции воспользуемся формулой производной сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
0
·
Хороший ответ
28 мая 2023 11:18
Остались вопросы?
Еще вопросы по категории Алгебра
В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 3 человека за рейс. Порядок, в котором вертолёт...
Упростите выражение (3/x+4 + 6x/x^2+x-12 - 1/x-3) : 8x-13/x^2-16 помогите...
Разложи на множители 3xy−24x−7y+56. Знаки + и − вводи в отдельные окошечки....
Как сократить дробь с буквами и цифрами...
Помогите извлечь корень из 147....
Все предметы