Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения производной данной функции воспользуемся формулой производной сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
0
·
Хороший ответ
28 мая 2023 11:18
Остались вопросы?
Еще вопросы по категории Алгебра
Решите уравнение 4^x - 3*2^x +2=0...
за 15 метров ткани двух сортов заплатили 2840руб.1 метор ткани 1 сорта стоит 200р,а 1 м ткани 2 сорта 180р.Сколько метров ткани каждого сорта было куп...
Найдите производную функции y=8-5x^4+7\6x^6...
Разложите на множители: x^2y+1-x^2-y...
Какие два числа надо вставить между числами 4 и - 108, чтобы они вместе с данными числами образовали геометрическую прогрессию?...