Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1710 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для нахождения производной данной функции воспользуемся формулой производной сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
(f(g(x)))' = f'(g(x)) * g'(x)
где f(x) = корень x, а g(x) = 4x^2 - 5x + 1.
Тогда:
f'(x) = 1 / (2 * корень x)
g'(x) = 8x - 5
Используя эти выражения, можем записать производную функции f(x) как:
f'(x) = f'(g(x)) * g'(x) = (1 / (2 * корень g(x))) * (8x - 5)
Заменяем g(x) на 4x^2 - 5x + 1:
f'(x) = (1 / (2 * корень (4x^2 - 5x + 1))) * (8x - 5)
Таким образом, производная данной функции равна:
f'(x) = (8x - 5) / (2 * корень (4x^2 - 5x + 1))
0
·
Хороший ответ
28 мая 2023 11:18
Остались вопросы?
Еще вопросы по категории Алгебра
Представте в виде многочлена выражение: (m^6-n^5(-m^6-n^5)...
Построить график функции y=5-x и y=x-1 И табличку пожалуйста тоже записать...
сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов 31.найдмте первый член прогрессии...
(x+2)^4+(x+2)^2-12=0...
Постройте график функции у=х2+2х-3...
Все предметы