Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования частного и общим правилом дифференцирования функций.
f(x) = (2x + 3)/(x - 1)
f'(x) = ((2x - 2)*(x - 1) - (2x + 3)*1)/(x - 1)^2
f'(x) = (2x^2 - 2x - 2x + 2 - 2x - 3)/(x - 1)^2
f'(x) = (2x^2 - 6x - 1)/(x - 1)^2
Ответ: f'(x) = (2x^2 - 6x - 1)/(x - 1)^2.
f(x) = (2x + 3)/(x - 1)
f'(x) = ((2x - 2)*(x - 1) - (2x + 3)*1)/(x - 1)^2
f'(x) = (2x^2 - 2x - 2x + 2 - 2x - 3)/(x - 1)^2
f'(x) = (2x^2 - 6x - 1)/(x - 1)^2
Ответ: f'(x) = (2x^2 - 6x - 1)/(x - 1)^2.
1
·
Хороший ответ
28 мая 2023 13:12
Остались вопросы?
Еще вопросы по категории Алгебра
Что такое tumbler girl?...
Геометрическая прогрессия задана условием Bn=160*3^n. Найдите сумму первых её 4 членов....
Представьте степень в виде дроби: а) 13 в минус 3 степени, б) 15 в минус 2 степени, в) 25 в минус 3 степени, г) 37 в минус 4 степени....
Бросают два игральных кубика Найдите вероятность того что числа на кубиках не совпадут...
Железнодорожный билет для взрослого стоит 720 рублей. Стоимость билета для школьника составляет 50% от стоимости билета для взро...
Все предметы