Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования частного и общим правилом дифференцирования функций.
f(x) = (2x + 3)/(x - 1)
f'(x) = ((2x - 2)*(x - 1) - (2x + 3)*1)/(x - 1)^2
f'(x) = (2x^2 - 2x - 2x + 2 - 2x - 3)/(x - 1)^2
f'(x) = (2x^2 - 6x - 1)/(x - 1)^2
Ответ: f'(x) = (2x^2 - 6x - 1)/(x - 1)^2.
f(x) = (2x + 3)/(x - 1)
f'(x) = ((2x - 2)*(x - 1) - (2x + 3)*1)/(x - 1)^2
f'(x) = (2x^2 - 2x - 2x + 2 - 2x - 3)/(x - 1)^2
f'(x) = (2x^2 - 6x - 1)/(x - 1)^2
Ответ: f'(x) = (2x^2 - 6x - 1)/(x - 1)^2.
1
·
Хороший ответ
28 мая 2023 13:12
Остались вопросы?
Еще вопросы по категории Алгебра
Периметр прямоугольника равен 20 см. Найдите его стороны, если известно, что площадь прямоугольника равна 24 см^2....
Найдите корень уравнения. Если уравнение имеет более одного корня, укажите меньший из них...
Арифметическая прогрессия (an) задана условиями a1=− 5, an + 1=an+12 найдите сумму первых 6 её членов ответ 150 должен получится...
перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участв...
Решите уравнение 2cos(pi/2-x)=tgx Найдите все корни этого уравнения, принадлежащие промежутку (-2pi; -pi/2)...