Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
0
·
Хороший ответ
28 мая 2023 13:15
Остались вопросы?
Еще вопросы по категории Алгебра
У мальчика было 15 монет - пятикопеечные и десятикопеечные, всего на сумму 95 к. Сколько было пятикопеечных и сколько десятикопеечных монет?...
В четырёх ящиках лежат красные, синие, белые шары. Число синих шаров в каждом ящике равно общему числу белых шаров во всех остальных ящиках. А число б...
Чему равна производная cos^2x?...
Разложите на множители.(ПОДРОБНО) а) 5bc-5c б) 10n+15n² в) 8ab+12bc г) 5y-5x+y²-xy д) a²-9 е) x²+10x+25...
Геометрическая прогрессия задана условием bn=64,5⋅(− 2)n. Найдите b6....