Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
0
·
Хороший ответ
28 мая 2023 13:15
Остались вопросы?
Еще вопросы по категории Алгебра
Докажите тождество: 1+sin2a/cos2a=tg(п/4+а)...
Cos(3pi\4)+cos(pi\2)+cos(-pi\4)+cos(2pi) Вычислите пожалуйста...
Помогите решить, хотя бы что-то....
Даны элементарные функции : g(x)= 3корня из x,f(x)=sin x,e(x)=5^x Запишите сложную функцию: а)F(e(x)):б)e(f(x)):в)f(g(e(x)))...
Прямая y=-4x-8 является касательной к графику функции y=x^3-3x^2-x-9. Найти абциссу точки касания. Распишите пожалуйста как делать....