Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования сложной функции:
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
(f(g(x)))' = f'(g(x)) * g'(x)
В данном случае функция f(x) является корнем функции g(x) = 4 - 3x. Таким образом, мы можем записать:
f(x) = √g(x)
Тогда:
f'(x) = (1/2) * g'(x) * g^(-1/2)(x)
где g^(-1/2)(x) - это обратная функция к корню, т.е. 1/(2√g(x)).
Находим производную g(x):
g'(x) = -3
Подставляем значения:
f'(x) = (1/2) * (-3) * (4 - 3x)^(-1/2) = -3/(2√(4 - 3x))
Таким образом, производная функции f(x) равна -3/(2√(4 - 3x)).
0
·
Хороший ответ
28 мая 2023 13:15
Остались вопросы?
Еще вопросы по категории Алгебра
Назовём трёхзначное число "интересным", если произведение его цифр больше суммы его цифр. Найдите наибольшее "интересное" трехзначное число. Помогите...
Известно, что 3m^4n=-2 Найдите значение выражения: 1)-12m^4n 2) 3m^8n^2...
Решить систему уравнений: x+y=5 x-y^2=3...
Геометрическая прогрессия (bn) задана условиями: b1=-2, bn+1=2bn. Найдите b7....
Решите неравенство x^2+2x-8/16-x^2>=0...