Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
30 мая 2023 23:56
405
Составить уравнение плоскостей,проходящей через точку АИ перпендикулярной вектору АВ если А(2;3;-4) В(-1;2;2)
1
ответ
Вектор, направленный от точки А к точке В, равен:
$\overrightarrow{AB} = \begin{pmatrix}-1-2 \\ 2-3 \\ 2+4\end{pmatrix} = \begin{pmatrix}-3 \\ -1 \\ 6\end{pmatrix}$
Вектор нормали к плоскости должен быть перпендикулярен вектору $\overrightarrow{AB}$. Для этого можно использовать скалярное произведение:
$\begin{pmatrix}a \\ b \\ c\end{pmatrix} \cdot \begin{pmatrix}-3 \\ -1 \\ 6\end{pmatrix} = 0$
$-3a - b + 6c = 0$
Это уравнение задает все возможные векторы нормали к плоскости, проходящей через точку А и перпендикулярной вектору $\overrightarrow{AB}$. Выберем один из таких векторов, например:
$\overrightarrow{n} = \begin{pmatrix}2 \\ 1 \\ 0\end{pmatrix}$
Этот вектор нормали можно использовать для записи уравнения плоскости в общем виде:
$2x + y + 0z + D = 0$
Чтобы найти коэффициент D, подставим в уравнение координаты точки А:
$2 \cdot 2 + 1 \cdot 3 + 0 \cdot (-4) + D = 0$
$D = -7$
Таким образом, уравнение плоскости, проходящей через точку А и перпендикулярной вектору АВ, имеет вид:
$2x + y - 7 = 0$
$\overrightarrow{AB} = \begin{pmatrix}-1-2 \\ 2-3 \\ 2+4\end{pmatrix} = \begin{pmatrix}-3 \\ -1 \\ 6\end{pmatrix}$
Вектор нормали к плоскости должен быть перпендикулярен вектору $\overrightarrow{AB}$. Для этого можно использовать скалярное произведение:
$\begin{pmatrix}a \\ b \\ c\end{pmatrix} \cdot \begin{pmatrix}-3 \\ -1 \\ 6\end{pmatrix} = 0$
$-3a - b + 6c = 0$
Это уравнение задает все возможные векторы нормали к плоскости, проходящей через точку А и перпендикулярной вектору $\overrightarrow{AB}$. Выберем один из таких векторов, например:
$\overrightarrow{n} = \begin{pmatrix}2 \\ 1 \\ 0\end{pmatrix}$
Этот вектор нормали можно использовать для записи уравнения плоскости в общем виде:
$2x + y + 0z + D = 0$
Чтобы найти коэффициент D, подставим в уравнение координаты точки А:
$2 \cdot 2 + 1 \cdot 3 + 0 \cdot (-4) + D = 0$
$D = -7$
Таким образом, уравнение плоскости, проходящей через точку А и перпендикулярной вектору АВ, имеет вид:
$2x + y - 7 = 0$
0
·
Хороший ответ
30 мая 2023 23:57
Остались вопросы?
Еще вопросы по категории Математика
Какое количество дм2 составляет 100 м2?...
опрос: Каково соотношение 100 миллиметров к другим единицам измерения длины?...
1)Найдите объем правильной шестиугольной пирамиды со стороной основания 12 см,если боковое ребро наклонено к плоскости основания под углом 60°? 2)В пр...
Пусть (с/a+b) +(a/b+c)+ (b/c+a) = 2 a+b+c=10 . Чему равно (1/a+b) + (1/ b+c) + (1/c+a) ?...
Каков результат вычисления 10 в минус 6 степени?...