Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 июня 2023 12:54
265
Учебник издан тиражом 100 000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0.00005. Найдите вероятность того, что тираж содержит не более двух бракованных книг.
1
ответ
Для решения задачи мы можем использовать биномиальное распределение. Пусть событие A - это сброшюрование книги неправильно, а событие B - это сброшюрование книги правильно. Тогда вероятность события A равна p = 0.00005, а вероятность события B равна q = 1 - p = 0.99995.
Так как мы ищем вероятность того, что тираж содержит не более двух бракованных книг, то нам нужно найти вероятность того, что в тираже будет 0, 1 или 2 бракованных книги. Для этого мы можем воспользоваться формулой биномиального распределения:
P(X=k) = C(n,k) * p^k * q^(n-k),
где P(X=k) - вероятность того, что в тираже будет k бракованных книг, C(n,k) - число сочетаний из n элементов по k, p - вероятность события A, q - вероятность события B, n - общее число книг в тираже.
Таким образом, вероятность того, что тираж содержит не более двух бракованных книг, равна:
P(X=0) + P(X=1) + P(X=2) = C(100000,0) * 0.00005^0 * 0.99995^100000 + C(100000,1) * 0.00005^1 * 0.99995^99999 + C(100000,2) * 0.00005^2 * 0.99995^99998
Вычислив это выражение, мы получим, что вероятность того, что тираж содержит не более двух бракованных книг, равна примерно 0.99995.
Так как мы ищем вероятность того, что тираж содержит не более двух бракованных книг, то нам нужно найти вероятность того, что в тираже будет 0, 1 или 2 бракованных книги. Для этого мы можем воспользоваться формулой биномиального распределения:
P(X=k) = C(n,k) * p^k * q^(n-k),
где P(X=k) - вероятность того, что в тираже будет k бракованных книг, C(n,k) - число сочетаний из n элементов по k, p - вероятность события A, q - вероятность события B, n - общее число книг в тираже.
Таким образом, вероятность того, что тираж содержит не более двух бракованных книг, равна:
P(X=0) + P(X=1) + P(X=2) = C(100000,0) * 0.00005^0 * 0.99995^100000 + C(100000,1) * 0.00005^1 * 0.99995^99999 + C(100000,2) * 0.00005^2 * 0.99995^99998
Вычислив это выражение, мы получим, что вероятность того, что тираж содержит не более двух бракованных книг, равна примерно 0.99995.
0
·
Хороший ответ
3 июня 2023 12:57
Остались вопросы?
Еще вопросы по категории Математика
Вопрос: Can you give an example of using the phrase "10 minutes past"?...
в окружность вписан квадрат. под каким углом из точек этой окружности можно увидеть его сторону?...
Из 1 т молока получается 83 кг сыра или 45 кг масла. На сколько Kилограммов больше сыра, чем масла ,получится из 20 т молока? РЕШИ ЗАДАЧУ РАЗНЫМИ СПОС...
№1. укажите число которое может быть остатком при делении натурального числа a на 98. А)102 Б)100 В)98 Г)96 №2.из 2 сёл расстояние между которыми рав...
Каким свойством обладает неполное частное при делении с остатком?...