Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
4 июня 2023 04:07
495
1) задание
- Доказать, что x2+y2+z2+2y-4z=4 - сфера
- Найти координаты центра и радиус сферы
- Найти значение m при котором точки
- A (0;m;2) и B (1;1;m-2) принадлежат данной сфере
2) задание
- Докажите что данное уравнение является уравнением сферы x^2+y^2+z^2-6x+10z=-9. Найдите координаты центра радиуса сферы
3) задание
- Записать координаты центра радиуса сферы, заданной уравнением (x-5)^2+(y+4)^2+z^2=81
4)задание
- Записать уравнение сферы с центром в точке (0; -2;3) и радиусом 5
5) задание
- 3. Точка А(0;корень2;корень5) лежит на сфере с центром О(3;0;0)
- а) Напишите уравление сферы
- б) Принадлежит ли этой сфере точка с координатами (4;-1;0)
6) задание
- Найдите координаты центра и радиус сферы x^2-6x+y^2+z^2=0
1
ответ
1) Доказательство:
Перепишем уравнение в следующем виде:
x^2 + (y+1)^2 - 1 + (z-2)^2 - 9 = 0
Заметим, что это уравнение является уравнением сферы с центром в точке (0,-1,2) и радиусом 2.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (0,-1,2), а радиус равен 2.
Чтобы проверить, что точки A и B принадлежат данной сфере, подставим их координаты в уравнение сферы и убедимся, что получится верное равенство.
2) Доказательство:
Перепишем уравнение в следующем виде:
(x-3)^2 + (y-0)^2 + (z+5)^2 - 9 - 25 = 0
Заметим, что это уравнение является уравнением сферы с центром в точке (3,0,-5) и радиусом 2.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (3,0,-5), а радиус равен 2.
3) Координаты центра сферы имеют вид (5,-4,0), а радиус равен sqrt(8). Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
4) Уравнение сферы с центром в точке (0,-2,3) и радиусом 5 имеет вид:
x^2 + (y+2)^2 + (z-3)^2 = 25
5) а) Уравнение сферы с центром в точке О(3;0;0), проходящей через точку А(0;корень2;корень5), имеет вид:
(x-3)^2 + y^2 + z^2 = 5
б) Точка (4;-1;0) не принадлежит данной сфере, так как при подстановке ее координат в уравнение сферы получается неравенство.
6) Перепишем уравнение в следующем виде:
x^2 - 6x + 9 + y^2 + z^2 = 9
(x-3)^2 + y^2 + z^2 = 9
Заметим, что это уравнение является уравнением сферы с центром в точке (3,0,0) и радиусом 3.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (3,0,0), а радиус равен 3.
Перепишем уравнение в следующем виде:
x^2 + (y+1)^2 - 1 + (z-2)^2 - 9 = 0
Заметим, что это уравнение является уравнением сферы с центром в точке (0,-1,2) и радиусом 2.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (0,-1,2), а радиус равен 2.
Чтобы проверить, что точки A и B принадлежат данной сфере, подставим их координаты в уравнение сферы и убедимся, что получится верное равенство.
2) Доказательство:
Перепишем уравнение в следующем виде:
(x-3)^2 + (y-0)^2 + (z+5)^2 - 9 - 25 = 0
Заметим, что это уравнение является уравнением сферы с центром в точке (3,0,-5) и радиусом 2.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (3,0,-5), а радиус равен 2.
3) Координаты центра сферы имеют вид (5,-4,0), а радиус равен sqrt(8). Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
4) Уравнение сферы с центром в точке (0,-2,3) и радиусом 5 имеет вид:
x^2 + (y+2)^2 + (z-3)^2 = 25
5) а) Уравнение сферы с центром в точке О(3;0;0), проходящей через точку А(0;корень2;корень5), имеет вид:
(x-3)^2 + y^2 + z^2 = 5
б) Точка (4;-1;0) не принадлежит данной сфере, так как при подстановке ее координат в уравнение сферы получается неравенство.
6) Перепишем уравнение в следующем виде:
x^2 - 6x + 9 + y^2 + z^2 = 9
(x-3)^2 + y^2 + z^2 = 9
Заметим, что это уравнение является уравнением сферы с центром в точке (3,0,0) и радиусом 3.
Для нахождения координат центра и радиуса можно использовать общую формулу уравнения сферы:
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
где (a,b,c) - координаты центра, r - радиус.
Таким образом, центр сферы имеет координаты (3,0,0), а радиус равен 3.
0
·
Хороший ответ
4 июня 2023 04:09
Остались вопросы?
Еще вопросы по категории Математика
Как записать число 10 в минус 25 степени в десятичном виде?...
11/12 : 7/24: 2 2/21 дроби это как решить,...
Наклонную плоскость используют для подъема груза на некоторую высоту. Полезная работа оказалась равной 3,5 МДж. Определите затраченную при этом работу...
Задумали число, которое на 20 больше, чем пятая часть этого задуманного числа. Найдите задуманное число...
Периметр квадрата 24см . найди его площадь...