Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
5 июня 2023 13:49
407
Точечная оценка математического ожидания нормально распределѐнного количественного признака равна 0,84.
Тогда его интервальная оценка может иметь вид:
Выберите один ответ:
- (0,66; 1,03)
- (0,66; 0,84)
- (0,84; 1,01)
- (0,67; 1,01)
1
ответ
Для нахождения интервальной оценки математического ожидания необходимо знать дисперсию распределения. Если она известна, то интервальная оценка будет иметь вид:
$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
где $\bar{X}$ - выборочное среднее, $\sigma$ - известное стандартное отклонение, $n$ - размер выборки, $z_{\alpha/2}$ - квантиль нормального распределения уровня доверия $(1-\alpha)$.
Однако, в данном случае дисперсия неизвестна, поэтому используем t-распределение Стьюдента. Интервальная оценка будет иметь вид:
$$\bar{X} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}$$
где $S$ - выборочное стандартное отклонение, $t_{n-1, \alpha/2}$ - квантиль t-распределения Стьюдента с $n-1$ степенями свободы и уровнем доверия $(1-\alpha)$.
Так как размер выборки неизвестен, то невозможно точно определить интервальную оценку. Однако, если предположить, что размер выборки достаточно большой (например, $n \geq 30$), то можно использовать приближение нормальным распределением и вычислить интервальную оценку по формуле выше.
Таким образом, ответ на вопрос неоднозначен, но наиболее близкий вариант - (0,66; 1,03).
$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
где $\bar{X}$ - выборочное среднее, $\sigma$ - известное стандартное отклонение, $n$ - размер выборки, $z_{\alpha/2}$ - квантиль нормального распределения уровня доверия $(1-\alpha)$.
Однако, в данном случае дисперсия неизвестна, поэтому используем t-распределение Стьюдента. Интервальная оценка будет иметь вид:
$$\bar{X} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}$$
где $S$ - выборочное стандартное отклонение, $t_{n-1, \alpha/2}$ - квантиль t-распределения Стьюдента с $n-1$ степенями свободы и уровнем доверия $(1-\alpha)$.
Так как размер выборки неизвестен, то невозможно точно определить интервальную оценку. Однако, если предположить, что размер выборки достаточно большой (например, $n \geq 30$), то можно использовать приближение нормальным распределением и вычислить интервальную оценку по формуле выше.
Таким образом, ответ на вопрос неоднозначен, но наиболее близкий вариант - (0,66; 1,03).
0
·
Хороший ответ
5 июня 2023 14:18
Остались вопросы?
Еще вопросы по категории Математика
На карте с масштабом 1:3000000 расстояние между двумя пунктами составляет 4 см.Какими будет это расстояние на карте с масштабом 1:12000000?Чему равно...
Какое количество целых частей получится при делении 100 на 16?...
На острове живёт 500 аборигенов, каждый из которых или рыцарь, всегда говорящий правду, или лжец, который всегда говорит неправду. все жители имеют ра...
Построить полигон относительных частот по данному распределению выборки: (см. фото)...
опрос: Какое число получится при умножении 10 на 100?...