Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
5 июня 2023 13:49
323
Точечная оценка математического ожидания нормально распределѐнного количественного признака равна 0,84.
Тогда его интервальная оценка может иметь вид:
Выберите один ответ:
- (0,66; 1,03)
- (0,66; 0,84)
- (0,84; 1,01)
- (0,67; 1,01)
1
ответ
Для нахождения интервальной оценки математического ожидания необходимо знать дисперсию распределения. Если она известна, то интервальная оценка будет иметь вид:
$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
где $\bar{X}$ - выборочное среднее, $\sigma$ - известное стандартное отклонение, $n$ - размер выборки, $z_{\alpha/2}$ - квантиль нормального распределения уровня доверия $(1-\alpha)$.
Однако, в данном случае дисперсия неизвестна, поэтому используем t-распределение Стьюдента. Интервальная оценка будет иметь вид:
$$\bar{X} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}$$
где $S$ - выборочное стандартное отклонение, $t_{n-1, \alpha/2}$ - квантиль t-распределения Стьюдента с $n-1$ степенями свободы и уровнем доверия $(1-\alpha)$.
Так как размер выборки неизвестен, то невозможно точно определить интервальную оценку. Однако, если предположить, что размер выборки достаточно большой (например, $n \geq 30$), то можно использовать приближение нормальным распределением и вычислить интервальную оценку по формуле выше.
Таким образом, ответ на вопрос неоднозначен, но наиболее близкий вариант - (0,66; 1,03).
$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
где $\bar{X}$ - выборочное среднее, $\sigma$ - известное стандартное отклонение, $n$ - размер выборки, $z_{\alpha/2}$ - квантиль нормального распределения уровня доверия $(1-\alpha)$.
Однако, в данном случае дисперсия неизвестна, поэтому используем t-распределение Стьюдента. Интервальная оценка будет иметь вид:
$$\bar{X} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}$$
где $S$ - выборочное стандартное отклонение, $t_{n-1, \alpha/2}$ - квантиль t-распределения Стьюдента с $n-1$ степенями свободы и уровнем доверия $(1-\alpha)$.
Так как размер выборки неизвестен, то невозможно точно определить интервальную оценку. Однако, если предположить, что размер выборки достаточно большой (например, $n \geq 30$), то можно использовать приближение нормальным распределением и вычислить интервальную оценку по формуле выше.
Таким образом, ответ на вопрос неоднозначен, но наиболее близкий вариант - (0,66; 1,03).
0
·
Хороший ответ
5 июня 2023 14:18
Остались вопросы?
Еще вопросы по категории Математика
Какое количество сантиметров соответствует 1 метру 50 сантиметров?...
Вычислите 1)0,5 в квадрате 2)0,3 в кубе 3)0,008 в квадрате 4)0,011 в квадрате...
Сколько будет 6+6*6-6...
ПОЖАЛУЙСТА ПОМОГИТЕ ДАЮ 50 БАЛЛОВ!!!!!!! Лев Алекс решил посчитать полоски на зебре Марти (чёрные и белые полоски чередуются). Оказалось, что чёрных п...
Вычислите значения выражений 690:3*205-47150+850 (238145-237776):41+327:3*7 10000-120*80+(900-750:25)*7...
Все предметы