Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
27 июня 2023 20:40
194
Найдите площадь , ограниченная линиями
y=x^3
x=0
y=1
1
ответ
Для решения данной задачи нужно найти точки пересечения графиков функций y=x^3 и y=1.
y=x^3 и y=1 пересекаются при x=1.
Таким образом, мы имеем следующую область:

Чтобы найти площадь этой области, нужно вычислить определенный интеграл от x=0 до x=1 функции f(x) = 1 - x^3:
S = ∫[0,1] (1 - x^3) dx = x - x^4/4 |[0,1] = 1 - 1/4 = 3/4
Ответ: площадь, ограниченная линиями y=x^3, x=0 и y=1, равна 3/4.
y=x^3 и y=1 пересекаются при x=1.
Таким образом, мы имеем следующую область:

Чтобы найти площадь этой области, нужно вычислить определенный интеграл от x=0 до x=1 функции f(x) = 1 - x^3:
S = ∫[0,1] (1 - x^3) dx = x - x^4/4 |[0,1] = 1 - 1/4 = 3/4
Ответ: площадь, ограниченная линиями y=x^3, x=0 и y=1, равна 3/4.
1
·
Хороший ответ
27 июня 2023 20:42
Остались вопросы?
Еще вопросы по категории Математика
Какие организмы практикуют бесполое воспроизводство?...
Как перевести число 10111 из двоичной системы в десятичную?...
Помогите с вопросами: 1. Когда могут возникнуть дробные числа? 2.Каким образом записывают обыкновенные дроби? 3.Как называют число, записанное над ч...
Сколько минут длится самая короткая ночь в Москве?!...
Задание '1 tga 1 cosa' корректно составлено?...