Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
9 сентября 2023 06:29
980
Существует два целых числа x
x и y
y, удовлетворяющих выражению x = 2^i - 1, y = 2^j - 1
x=2i
−1,y=2j
−1, где 1 \le i, j \le 64
1≤i,j≤64
Определите, сколько существует вариантов выбрать x
x и y
y при следующих условиях:
1. x > y
x>y
2. Произведение данных чисел в двоичной записи содержит хотя бы одну единицу и хотя бы один ноль
3. Произведение данных чисел в двоичной записи имеет разницу между количеством единиц и нулей не более 13
1
ответ
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Для решения этой задачи нам понадобится знание битовых операций и свойств бинарных чисел.
1. Условие x > y означает, что i > j. Так как 1 ≤ i, j ≤ 64, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия x > y равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию x > y.
2. Чтобы произведение чисел содержало хотя бы одну единицу и хотя бы один ноль в двоичной записи, необходимо, чтобы каждое из чисел x и y содержало хотя бы одну единицу и хотя бы один ноль. Для этого нужно, чтобы соответствующие биты в числах i и j были различными. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение содержит хотя бы одну единицу и хотя бы один ноль равно сумме всех значений i - 1 от 1 до 63, что можно выразить следующим образом:
(1 - 1) + (2 - 1) + (3 - 1) + ... + (63 - 1) = 0 + 1 + 2 + ... + 62 = (62 * 63) / 2 = 1953
Таким образом, существует 1953 варианта выбора x и y, удовлетворяющих условию произведение содержит хотя бы одну единицу и хотя бы один ноль.
3. Чтобы произведение чисел имело разницу между количеством единиц и нулей не более 13, необходимо, чтобы разница между количеством единиц и количеством нулей в двоичной записи числа i была не более 13. Так как i > j, то у нас есть 63 варианта для значения i (от 2 до 64) и для каждого значения i есть i - 1 вариант для значения j (от 1 до i - 1). Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13.
Таким образом, общее количество вариантов для условия произведение имеет разницу между количеством единиц и нулей не более 13 равно сумме всех значений i - 1 от 1 до 63, где разница между количеством единиц и количеством нулей в двоичной записи числа i не превышает 13
0
·
Хороший ответ
9 сентября 2023 06:32
Остались вопросы?
Еще вопросы по категории Информатика
Что такое неопределеность знания об исходе некоторого события...
1.Приведите примеры алгоритмов из повседневной жизни: 1.Приготовление какого - либо напитка (чай,кофе) 2. Перехода через проезжую часть 3. Подготовк...
Чем отличаются полное ветвление от неполного ?...
База данных – это: 1.совокупность данных, организованных по определенным правилам; 2. совокупность программ для хранения и обработки больших массиво...
Какие из чисел удовлетворяют условию (x % 4 == 0 and x % 100 != 0) or x % 400 == 0? ...
Все предметы