Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 октября 2023 18:04
263
- Докажите, что для любых целых значений а, b, с верно, что выражение (a + b + c) (ab + bc + ac) - abc делится на (а + b).
1
ответ
Для доказательства данного утверждения, мы можем воспользоваться свойствами алгебры и дистрибутивности.
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
0
·
Хороший ответ
15 октября 2023 18:06
Остались вопросы?
Еще вопросы по категории Математика
Какие числа нужно перемножить между собой, чтобы получить результат 0?...
Какое число получится, если из 19 вычесть 13?...
Вопрос: Какие предложения можно составить, используя слово "мама"?...
Каждой букве русского алфавита ставится в соответствие ее порядковый номер расположения в алфавите. Задает ли это сообтвествие функцию?Обоснуйте, сраз...
Расположите в порядке убывания числа: 1) 4/9, 1/4, 7/12, 13/18; 2) 28/45, 5/9, 7/10, 13/18, 8/15....