Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
15 октября 2023 18:04
134
- Докажите, что для любых целых значений а, b, с верно, что выражение (a + b + c) (ab + bc + ac) - abc делится на (а + b).
1
ответ
Для доказательства данного утверждения, мы можем воспользоваться свойствами алгебры и дистрибутивности.
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
0
·
Хороший ответ
15 октября 2023 18:06
Остались вопросы?
Еще вопросы по категории Математика
Сколько квадратных сантиметров в одном квадратном метре?...
14. За первый час рабочий зарабатывает 100 рублей, а за каждый после- дующий за ним час на одно и то же число рублей больше, чем за предыду- щий час....
Как записать в виде математической операции задание '1 3 плюс 0 3'?...
Что такое 10 во второй степени?...
Какие варианты ответов нужно предоставить?...
Все предметы