Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
15 октября 2023 18:04
147
- Докажите, что для любых целых значений а, b, с верно, что выражение (a + b + c) (ab + bc + ac) - abc делится на (а + b).
1
ответ
Для доказательства данного утверждения, мы можем воспользоваться свойствами алгебры и дистрибутивности.
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
Имеем выражение (a + b + c)(ab + bc + ac) - abc.
Раскроем скобки:
(a + b + c)(ab + bc + ac) - abc = a(ab + bc + ac) + b(ab + bc + ac) + c(ab + bc + ac) - abc.
Теперь вынесем общий множитель (a + b) из первых двух слагаемых и (ab + bc + ac) из последних двух слагаемых:
= (a + b)(ab + bc + ac) + c(ab + bc + ac) - abc.
Заметим, что (ab + bc + ac) является общим множителем для всех трех слагаемых. Вынесем его за скобки:
= (ab + bc + ac)((a + b) + c) - abc.
Раскроем скобки:
= (ab + bc + ac)(a + b + c) - abc.
Теперь заметим, что (a + b + c) является общим множителем для обоих слагаемых. Вынесем его за скобки:
= (a + b + c)(ab + bc + ac - abc).
Таким образом, мы получили выражение, которое является произведением (a + b + c) и некоторого целого числа (ab + bc + ac - abc).
Так как (a + b + c) и (ab + bc + ac - abc) являются целыми числами, то их произведение также будет целым числом.
Таким образом, мы доказали, что выражение (a + b + c)(ab + bc + ac) - abc делится на (a + b).
0
·
Хороший ответ
15 октября 2023 18:06
Остались вопросы?
Еще вопросы по категории Математика
Сколько миллиграмм в 1 грамме?...
математика 6 класс. приведите дроби к наименьшему общему знаменателю: семь двеннадцетых и пять восьмых, НОК (12,8)=...
Помогите,пожалуйста! Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость...
Какая сила соответствует 1 килоньютону?...
Помогите Пожалуйста решить Ребята!!Найдите наибольший общий делитель числителя и знаменателя дроби:35/55; 2)48/112; 3)34/136; 4)42/154. Спасибо Огромн...
Все предметы