Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
17 октября 2023 14:09
111
Действительное число 𝑎
таково, что уравнение 𝑎𝑥
2
+(𝑎+10)𝑥−10−2𝑎=0
имеет два действительных корня, отличающихся в 3
раза. Чему может быть равно 𝑎
? Укажите все возможные варианты.
1
ответ
Для решения данной задачи, воспользуемся формулой дискриминанта для квадратного уравнения. Дискриминант D равен:
D = (𝑎+10)² - 4 * 𝑎 * (-10-2𝑎)
Раскроем скобки и упростим выражение:
D = 𝑎² + 20𝑎 + 100 - 4𝑎² + 40𝑎
D = -3𝑎² + 60𝑎 + 100
Так как уравнение имеет два действительных корня, отличающихся в 3 раза, то дискриминант должен быть больше нуля и квадратное уравнение должно иметь два различных действительных корня.
D > 0
-3𝑎² + 60𝑎 + 100 > 0
Для решения данного неравенства, найдем корни квадратного уравнения:
-3𝑎² + 60𝑎 + 100 = 0
Сначала поделим все коэффициенты на -1:
3𝑎² - 60𝑎 - 100 = 0
Теперь найдем корни этого уравнения с помощью формулы:
𝑎₁,₂ = (-𝑏 ± √(𝑏² - 4𝑎𝑐)) / 2𝑎
𝑎₁,₂ = (60 ± √(60² - 4 * 3 * (-100))) / (2 * 3)
𝑎₁,₂ = (60 ± √(3600 + 1200)) / 6
𝑎₁,₂ = (60 ± √4800) / 6
𝑎₁,₂ = (60 ± 69.28) / 6
Таким образом, получаем два возможных значения для 𝑎:
𝑎₁ ≈ (60 + 69.28) / 6 ≈ 21.55
𝑎₂ ≈ (60 - 69.28) / 6 ≈ -1.55
Ответ: 𝑎 может быть равно 21.55 или -1.55.
D = (𝑎+10)² - 4 * 𝑎 * (-10-2𝑎)
Раскроем скобки и упростим выражение:
D = 𝑎² + 20𝑎 + 100 - 4𝑎² + 40𝑎
D = -3𝑎² + 60𝑎 + 100
Так как уравнение имеет два действительных корня, отличающихся в 3 раза, то дискриминант должен быть больше нуля и квадратное уравнение должно иметь два различных действительных корня.
D > 0
-3𝑎² + 60𝑎 + 100 > 0
Для решения данного неравенства, найдем корни квадратного уравнения:
-3𝑎² + 60𝑎 + 100 = 0
Сначала поделим все коэффициенты на -1:
3𝑎² - 60𝑎 - 100 = 0
Теперь найдем корни этого уравнения с помощью формулы:
𝑎₁,₂ = (-𝑏 ± √(𝑏² - 4𝑎𝑐)) / 2𝑎
𝑎₁,₂ = (60 ± √(60² - 4 * 3 * (-100))) / (2 * 3)
𝑎₁,₂ = (60 ± √(3600 + 1200)) / 6
𝑎₁,₂ = (60 ± √4800) / 6
𝑎₁,₂ = (60 ± 69.28) / 6
Таким образом, получаем два возможных значения для 𝑎:
𝑎₁ ≈ (60 + 69.28) / 6 ≈ 21.55
𝑎₂ ≈ (60 - 69.28) / 6 ≈ -1.55
Ответ: 𝑎 может быть равно 21.55 или -1.55.
0
·
Хороший ответ
17 октября 2023 14:18
Остались вопросы?
Еще вопросы по категории Математика
Какие слова можно составить из букв слова 'мороженое'?...
Какое количество квадратных метров соответствует одному квадратному дециметру?...
Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции....
Определи название месяца по порядку номеру срочно!!!!!1 номер...
Помогите решить -1:12=?...
Все предметы