Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
18 октября 2023 08:41
292
y=x^4-2x².Найти промежутки возрастания и убывания функции
1
ответ
Для того чтобы найти промежутки возрастания и убывания функции, необходимо найти ее производную и проанализировать ее знаки.
Для данной функции, y = x^4 - 2x^2, найдем первую производную:
y' = 4x^3 - 4x
Затем приравняем производную к нулю и найдем критические точки:
4x^3 - 4x = 0
4x(x^2 - 1) = 0
Таким образом, получаем две критические точки: x = 0 и x = ±1.
Теперь проанализируем знаки производной на интервалах между критическими точками и за пределами этих точек.
1. Когда x < -1:
Подставим x = -2 в производную:
y' = 4(-2)^3 - 4(-2) = -32 + 8 = -24
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
2. Когда -1 < x < 0:
Подставим x = -0.5 в производную:
y' = 4(-0.5)^3 - 4(-0.5) = -1 + 2 = 1
Знак производной положительный.
Значит, на этом интервале функция возрастает.
3. Когда 0 < x < 1:
Подставим x = 0.5 в производную:
y' = 4(0.5)^3 - 4(0.5) = 1 - 2 = -1
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
4. Когда x > 1:
Подставим x = 2 в производную:
y' = 4(2)^3 - 4(2) = 32 - 8 = 24
Знак производной положительный.
Значит, на этом интервале функция возрастает.
Таким образом, промежутки возрастания функции: (-1, 0) и (1, +∞).
Промежутки убывания функции: (-∞, -1) и (0, 1).
Для данной функции, y = x^4 - 2x^2, найдем первую производную:
y' = 4x^3 - 4x
Затем приравняем производную к нулю и найдем критические точки:
4x^3 - 4x = 0
4x(x^2 - 1) = 0
Таким образом, получаем две критические точки: x = 0 и x = ±1.
Теперь проанализируем знаки производной на интервалах между критическими точками и за пределами этих точек.
1. Когда x < -1:
Подставим x = -2 в производную:
y' = 4(-2)^3 - 4(-2) = -32 + 8 = -24
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
2. Когда -1 < x < 0:
Подставим x = -0.5 в производную:
y' = 4(-0.5)^3 - 4(-0.5) = -1 + 2 = 1
Знак производной положительный.
Значит, на этом интервале функция возрастает.
3. Когда 0 < x < 1:
Подставим x = 0.5 в производную:
y' = 4(0.5)^3 - 4(0.5) = 1 - 2 = -1
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
4. Когда x > 1:
Подставим x = 2 в производную:
y' = 4(2)^3 - 4(2) = 32 - 8 = 24
Знак производной положительный.
Значит, на этом интервале функция возрастает.
Таким образом, промежутки возрастания функции: (-1, 0) и (1, +∞).
Промежутки убывания функции: (-∞, -1) и (0, 1).
0
·
Хороший ответ
18 октября 2023 08:42
Остались вопросы?
Еще вопросы по категории Математика
Найдите по формуле объема прямоугольного параллелепипеда V=abc значении V если а =4/5 Дм , b= 2 1/2 Дм , с = 1 3/4 Дм . СРОЧНО СРОЧНО...
Какова длина в миллиметрах объекта, который имеет длину 1 м 10 дм?...
провод длиной 456 м разрезали на 3 части, причем первая часть в 4 раза длинеетретей, а вторая — на 114 м длиннее третей. найдите длину каждой части пр...
Какое значение может иметь масштаб в задании?...
1)Маша купила 8 тетрадей в линейку и x тетрадей в клетку.Сколько тетрадей купила Маша? 2)В гирлянде 24 красные лампочки,а зеленых на x лампочек меньше...