Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
18 октября 2023 08:41
202
y=x^4-2x².Найти промежутки возрастания и убывания функции
1
ответ
Для того чтобы найти промежутки возрастания и убывания функции, необходимо найти ее производную и проанализировать ее знаки.
Для данной функции, y = x^4 - 2x^2, найдем первую производную:
y' = 4x^3 - 4x
Затем приравняем производную к нулю и найдем критические точки:
4x^3 - 4x = 0
4x(x^2 - 1) = 0
Таким образом, получаем две критические точки: x = 0 и x = ±1.
Теперь проанализируем знаки производной на интервалах между критическими точками и за пределами этих точек.
1. Когда x < -1:
Подставим x = -2 в производную:
y' = 4(-2)^3 - 4(-2) = -32 + 8 = -24
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
2. Когда -1 < x < 0:
Подставим x = -0.5 в производную:
y' = 4(-0.5)^3 - 4(-0.5) = -1 + 2 = 1
Знак производной положительный.
Значит, на этом интервале функция возрастает.
3. Когда 0 < x < 1:
Подставим x = 0.5 в производную:
y' = 4(0.5)^3 - 4(0.5) = 1 - 2 = -1
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
4. Когда x > 1:
Подставим x = 2 в производную:
y' = 4(2)^3 - 4(2) = 32 - 8 = 24
Знак производной положительный.
Значит, на этом интервале функция возрастает.
Таким образом, промежутки возрастания функции: (-1, 0) и (1, +∞).
Промежутки убывания функции: (-∞, -1) и (0, 1).
Для данной функции, y = x^4 - 2x^2, найдем первую производную:
y' = 4x^3 - 4x
Затем приравняем производную к нулю и найдем критические точки:
4x^3 - 4x = 0
4x(x^2 - 1) = 0
Таким образом, получаем две критические точки: x = 0 и x = ±1.
Теперь проанализируем знаки производной на интервалах между критическими точками и за пределами этих точек.
1. Когда x < -1:
Подставим x = -2 в производную:
y' = 4(-2)^3 - 4(-2) = -32 + 8 = -24
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
2. Когда -1 < x < 0:
Подставим x = -0.5 в производную:
y' = 4(-0.5)^3 - 4(-0.5) = -1 + 2 = 1
Знак производной положительный.
Значит, на этом интервале функция возрастает.
3. Когда 0 < x < 1:
Подставим x = 0.5 в производную:
y' = 4(0.5)^3 - 4(0.5) = 1 - 2 = -1
Знак производной отрицательный.
Значит, на этом интервале функция убывает.
4. Когда x > 1:
Подставим x = 2 в производную:
y' = 4(2)^3 - 4(2) = 32 - 8 = 24
Знак производной положительный.
Значит, на этом интервале функция возрастает.
Таким образом, промежутки возрастания функции: (-1, 0) и (1, +∞).
Промежутки убывания функции: (-∞, -1) и (0, 1).
0
·
Хороший ответ
18 октября 2023 08:42
Остались вопросы?
Еще вопросы по категории Математика
Какое число получится, если умножить 10101011 на 2 в шестнадцатеричной системе счисления?...
Какое название имеет числовой ряд, в котором каждое число состоит из 11 цифр?...
На диаграмме показана среднемесячная температура воздуха в Минске за каждый месяц 2003 года. По горизонтали указываются месяцы, а по вертикали - темпе...
Квадрат со стороной 1,8 см и прямоугольник имеют равные площади. Найдите периметр прямоугольника, если одна из его сторон равна 6  ...
Два насоса разных мощностей наполняют большую ёмкость с водой. Мощный насос может это сделать за 5 часов, а вместе со слабым - за 4 часа. Какова произ...