Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
19 октября 2023 12:43
105
Из палочек длиной 1 см выложили контур прямоугольника так, что его периметр (в сантиметрах) оказался численно на пять меньше площади (в квадратных сантиметрах). Сколько палочек было использовано? Укажите все возможные варианты. Палочки нельзя ломать!
1
ответ
Пусть стороны прямоугольника равны a и b палочкам. Тогда периметр прямоугольника равен 2a + 2b, а площадь равна ab.
Условие задачи гласит, что периметр оказался численно на пять меньше площади, т.е. 2a + 2b = ab - 5.
Решим это уравнение относительно a: 2a = ab - 2b - 5. Выразим a: a = (ab - 2b - 5) / 2.
Также из условия задачи следует, что a и b должны быть целыми числами, поскольку мы не можем использовать часть палочки.
Теперь переберем все возможные значения a и b, чтобы найти все варианты:
1. a = 1, b = (b - 2 - 5) / 2 = (b - 7) / 2.
В этом случае b должно быть нечетным числом, чтобы (b - 7) / 2 было целым. Возможные значения b: 9, 11, 13, ...
При b = 9, a = 1, периметр = 2 * 1 + 2 * 9 = 20, площадь = 1 * 9 = 9, что не удовлетворяет условию задачи.
При b = 11, a = 1, периметр = 2 * 1 + 2 * 11 = 24, площадь = 1 * 11 = 11, что не удовлетворяет условию задачи.
При b = 13, a = 1, периметр = 2 * 1 + 2 * 13 = 28, площадь = 1 * 13 = 13, что не удовлетворяет условию задачи.
И так далее.
2. a = 2, b = (2b - 2 - 5) / 2 = (2b - 7) / 2.
В этом случае (2b - 7) должно быть нечетным числом, чтобы (2b - 7) / 2 было целым. Возможные значения (2b - 7): 9, 11, 13, ...
При (2b - 7) = 9, b = (9 + 7) / 2 = 8, a = 2, периметр = 2 * 2 + 2 * 8 = 20, площадь = 2 * 8 = 16, что не удовлетворяет условию задачи.
При (2b - 7) = 11, b = (11 + 7) / 2 = 9, a = 2, периметр = 2 * 2 + 2 * 9 = 22, площадь = 2 * 9 = 18, что не удовлетворяет условию задачи.
При (2b - 7) = 13, b = (13 + 7) / 2 = 10, a = 2, периметр = 2 * 2 + 2 * 10 = 24, площадь = 2 * 10 = 20, что удовлетворяет условию задачи.
И так далее.
3. a = 3, b = (3b - 2 - 5) / 2 = (3b - 7) / 2.
В этом случае (3b - 7) должно быть нечетным числом, чтобы (3b - 7) / 2 было целым. Возможные значения (3b - 7): 9, 11, 13, ...
При (3b - 7) = 9, b = (9 + 7) / 3 = 5, a = 3, периметр = 2 * 3 + 2 * 5 = 16, площадь = 3 * 5 = 15, что не удовлетворяет условию задачи.
При (3b - 7) = 11, b = (11 + 7) / 3 = 6, a = 3, периметр = 2 * 3 + 2 * 6 = 18, площадь = 3 * 6 = 18, что не удовлетворяет условию задачи.
При (3b - 7) = 13, b = (13 + 7) / 3 = 7, a = 3, периметр = 2 * 3 + 2 * 7 = 20, площадь = 3 * 7 = 21, что удовлетворяет условию задачи.
И так далее.
Продолжая перебирать значения a и b, мы можем найти все возможные варианты. В данном случае, возможны следующие варианты:
a = 2, b = 10 (периметр = 24, площадь = 20)
a = 3, b = 7 (периметр = 20, площадь = 21)
Таким образом, существуют два возможных варианта, когда можно использовать палочки: 2 и 10 палочек, или 3 и 7 палочек.
Условие задачи гласит, что периметр оказался численно на пять меньше площади, т.е. 2a + 2b = ab - 5.
Решим это уравнение относительно a: 2a = ab - 2b - 5. Выразим a: a = (ab - 2b - 5) / 2.
Также из условия задачи следует, что a и b должны быть целыми числами, поскольку мы не можем использовать часть палочки.
Теперь переберем все возможные значения a и b, чтобы найти все варианты:
1. a = 1, b = (b - 2 - 5) / 2 = (b - 7) / 2.
В этом случае b должно быть нечетным числом, чтобы (b - 7) / 2 было целым. Возможные значения b: 9, 11, 13, ...
При b = 9, a = 1, периметр = 2 * 1 + 2 * 9 = 20, площадь = 1 * 9 = 9, что не удовлетворяет условию задачи.
При b = 11, a = 1, периметр = 2 * 1 + 2 * 11 = 24, площадь = 1 * 11 = 11, что не удовлетворяет условию задачи.
При b = 13, a = 1, периметр = 2 * 1 + 2 * 13 = 28, площадь = 1 * 13 = 13, что не удовлетворяет условию задачи.
И так далее.
2. a = 2, b = (2b - 2 - 5) / 2 = (2b - 7) / 2.
В этом случае (2b - 7) должно быть нечетным числом, чтобы (2b - 7) / 2 было целым. Возможные значения (2b - 7): 9, 11, 13, ...
При (2b - 7) = 9, b = (9 + 7) / 2 = 8, a = 2, периметр = 2 * 2 + 2 * 8 = 20, площадь = 2 * 8 = 16, что не удовлетворяет условию задачи.
При (2b - 7) = 11, b = (11 + 7) / 2 = 9, a = 2, периметр = 2 * 2 + 2 * 9 = 22, площадь = 2 * 9 = 18, что не удовлетворяет условию задачи.
При (2b - 7) = 13, b = (13 + 7) / 2 = 10, a = 2, периметр = 2 * 2 + 2 * 10 = 24, площадь = 2 * 10 = 20, что удовлетворяет условию задачи.
И так далее.
3. a = 3, b = (3b - 2 - 5) / 2 = (3b - 7) / 2.
В этом случае (3b - 7) должно быть нечетным числом, чтобы (3b - 7) / 2 было целым. Возможные значения (3b - 7): 9, 11, 13, ...
При (3b - 7) = 9, b = (9 + 7) / 3 = 5, a = 3, периметр = 2 * 3 + 2 * 5 = 16, площадь = 3 * 5 = 15, что не удовлетворяет условию задачи.
При (3b - 7) = 11, b = (11 + 7) / 3 = 6, a = 3, периметр = 2 * 3 + 2 * 6 = 18, площадь = 3 * 6 = 18, что не удовлетворяет условию задачи.
При (3b - 7) = 13, b = (13 + 7) / 3 = 7, a = 3, периметр = 2 * 3 + 2 * 7 = 20, площадь = 3 * 7 = 21, что удовлетворяет условию задачи.
И так далее.
Продолжая перебирать значения a и b, мы можем найти все возможные варианты. В данном случае, возможны следующие варианты:
a = 2, b = 10 (периметр = 24, площадь = 20)
a = 3, b = 7 (периметр = 20, площадь = 21)
Таким образом, существуют два возможных варианта, когда можно использовать палочки: 2 и 10 палочек, или 3 и 7 палочек.
0
·
Хороший ответ
19 октября 2023 12:45
Остались вопросы?
Еще вопросы по категории Математика
Найти массу и количество вещества выпавшего осадка если в реакцию вступили 4,16 г хлорида бария и 3,15г сульфата натрия...
Какой объем занимают 10 см в дециметрах?...
Сколькими способами можно составить расписание уроков на один день из пяти разных учебных предметов?...
Какой день недели был в начале учебного года?...
Представьте в виде десятичной дроби числа 4 5-ых 8 25-ых 1 4-ая 3 50-ых 17 20-ых между ними дробная черта...
Все предметы