Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
12 ноября 2023 14:04
185
- При каких значениях параметра а каждое решение неравенства x^2 - 3x + 2 < 0 будет содержаться среди решений неравенства ax^2 - (3a + 1)x + 3 > 0?
1
ответ
Чтобы каждое решение неравенства x^2 - 3x + 2 < 0 содержалось среди решений неравенства ax^2 - (3a + 1)x + 3 > 0, необходимо и достаточно, чтобы графики обоих квадратных трехчленов пересекали ось Ox в одних и тех же точках.
Квадратный трехчлен x^2 - 3x + 2 < 0 имеет два корня: x1 = 1 и x2 = 2.
Квадратный трехчлен ax^2 - (3a + 1)x + 3 > 0 имеет два корня, которые совпадают с корнями x^2 - 3x + 2 < 0, если и только если дискриминант этого трехчлена равен нулю.
Дискриминант квадратного трехчлена равен (3a + 1)^2 - 4a*3 = 9a^2 + 6a + 1 - 12a = 9a^2 - 6a + 1.
Дискриминант равен нулю, если 9a^2 - 6a + 1 = 0.
Решим это квадратное уравнение.
D = (-6)^2 - 4*9*1 = 36 - 36 = 0.
D = 0 означает, что уравнение имеет один корень.
Таким образом, решение уравнения 9a^2 - 6a + 1 = 0 будет содержать значения параметра a, при которых каждое решение неравенства x^2 - 3x + 2 < 0 будет содержаться среди решений неравенства ax^2 - (3a + 1)x + 3 > 0.
Квадратный трехчлен x^2 - 3x + 2 < 0 имеет два корня: x1 = 1 и x2 = 2.
Квадратный трехчлен ax^2 - (3a + 1)x + 3 > 0 имеет два корня, которые совпадают с корнями x^2 - 3x + 2 < 0, если и только если дискриминант этого трехчлена равен нулю.
Дискриминант квадратного трехчлена равен (3a + 1)^2 - 4a*3 = 9a^2 + 6a + 1 - 12a = 9a^2 - 6a + 1.
Дискриминант равен нулю, если 9a^2 - 6a + 1 = 0.
Решим это квадратное уравнение.
D = (-6)^2 - 4*9*1 = 36 - 36 = 0.
D = 0 означает, что уравнение имеет один корень.
Таким образом, решение уравнения 9a^2 - 6a + 1 = 0 будет содержать значения параметра a, при которых каждое решение неравенства x^2 - 3x + 2 < 0 будет содержаться среди решений неравенства ax^2 - (3a + 1)x + 3 > 0.
0
·
Хороший ответ
12 ноября 2023 14:06
Остались вопросы?
Еще вопросы по категории Математика
Все предметы