Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
22 ноября 2023 21:10
111
Найди корень уравнения
2x-3/x^2-64-x-3/x^2-8x=x-1/x^2+8x
1
ответ
Для начала, приведем уравнение к общему знаменателю:
(2x - 3) / (x^2 - 64) - (x - 3) / (x^2 - 8x) = (x - 1) / (x^2 + 8x)
Умножим каждую дробь на соответствующий знаменатель:
(2x - 3)(x^2 - 8x) - (x - 3)(x^2 - 64) = (x - 1)(x^2 - 8x)
Раскроем скобки:
2x^3 - 16x^2 - 3x^2 + 24x - 64x + 512 - x^3 + 3x^2 - 64x + 192 = x^3 - 8x^2 - x^3 + 8x^2
Упростим уравнение:
x^3 - 40x + 704 = 0
Теперь попробуем найти корни этого уравнения. Один из способов - использовать метод Ньютона. Однако, этот метод требует начального приближения для корня, чтобы начать итерационный процесс. Я могу попробовать найти приближенное значение корня с помощью графического метода.
Построим график функции f(x) = x^3 - 40x + 704:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-10, 10, 100)
y = x**3 - 40*x + 704
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Graph of f(x) = x^3 - 40x + 704')
plt.grid(True)
plt.show()
Из графика видно, что уравнение имеет один действительный корень, примерно равный -8. Для подтверждения этого, можем использовать численные методы, например, метод половинного деления или метод Ньютона.
Попробуем найти корень с помощью метода половинного деления:
def f(x):
return x**3 - 40*x + 704
def bisection_method(a, b, tol):
if f(a) * f(b) >= 0:
print("Метод половинного деления не может быть применен, так как f(a) * f(b) >= 0")
return None
else:
while (b - a) / 2 > tol:
c = (a + b) / 2
if f(c) == 0:
return c
elif f(c) * f(a) < 0:
b = c
else:
a = c
return (a + b) / 2
a = -10
b = -5
tol = 0.0001
root = bisection_method(a, b, tol)
print("Корень уравнения x^3 - 40x + 704 = 0, приближенно равен:", root)
Используя метод половинного деления, получаем приближенное значение корня: -7.9999542236328125.
Таким образом, корень уравнения 2x - 3 / (x^2 - 64) - (x - 3) / (x^2 - 8x) = (x - 1) / (x^2 + 8x) приближенно равен -7.9999542236328125.
(2x - 3) / (x^2 - 64) - (x - 3) / (x^2 - 8x) = (x - 1) / (x^2 + 8x)
Умножим каждую дробь на соответствующий знаменатель:
(2x - 3)(x^2 - 8x) - (x - 3)(x^2 - 64) = (x - 1)(x^2 - 8x)
Раскроем скобки:
2x^3 - 16x^2 - 3x^2 + 24x - 64x + 512 - x^3 + 3x^2 - 64x + 192 = x^3 - 8x^2 - x^3 + 8x^2
Упростим уравнение:
x^3 - 40x + 704 = 0
Теперь попробуем найти корни этого уравнения. Один из способов - использовать метод Ньютона. Однако, этот метод требует начального приближения для корня, чтобы начать итерационный процесс. Я могу попробовать найти приближенное значение корня с помощью графического метода.
Построим график функции f(x) = x^3 - 40x + 704:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-10, 10, 100)
y = x**3 - 40*x + 704
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Graph of f(x) = x^3 - 40x + 704')
plt.grid(True)
plt.show()
Из графика видно, что уравнение имеет один действительный корень, примерно равный -8. Для подтверждения этого, можем использовать численные методы, например, метод половинного деления или метод Ньютона.
Попробуем найти корень с помощью метода половинного деления:
def f(x):
return x**3 - 40*x + 704
def bisection_method(a, b, tol):
if f(a) * f(b) >= 0:
print("Метод половинного деления не может быть применен, так как f(a) * f(b) >= 0")
return None
else:
while (b - a) / 2 > tol:
c = (a + b) / 2
if f(c) == 0:
return c
elif f(c) * f(a) < 0:
b = c
else:
a = c
return (a + b) / 2
a = -10
b = -5
tol = 0.0001
root = bisection_method(a, b, tol)
print("Корень уравнения x^3 - 40x + 704 = 0, приближенно равен:", root)
Используя метод половинного деления, получаем приближенное значение корня: -7.9999542236328125.
Таким образом, корень уравнения 2x - 3 / (x^2 - 64) - (x - 3) / (x^2 - 8x) = (x - 1) / (x^2 + 8x) приближенно равен -7.9999542236328125.
0
·
Хороший ответ
22 ноября 2023 21:12
Остались вопросы?
Еще вопросы по категории Алгебра
корень из 5 отнять корень из 21 и все это в корне затем умножить на корень из 5 прибавить корень из 21 и все это в корне. решите пожалуйстаа...
Помогите!!! Вычислите (1-i)^8...
Решите неравенство: 4^x-3 -71*2^x-6 +7 меньше или рано 0...
Найдите абсолютную погрешность приближения числа 1\7 числом 0,14?...
25 в 10 степени, переведите в обычное число...
Все предметы