Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для нахождения седьмого члена геометрической прогрессии, мы можем использовать формулу:
bn = b1 * q^(n-1)
где bn - n-ый член прогрессии, b1 - первый член прогрессии, q - знаменатель прогрессии, n - номер члена прогрессии.
Из условия известно, что b8 = 16 и q = 3/4.
Подставляя значения в формулу, получаем:
16 = b1 * (3/4)^(8-1)
Упрощая, получаем:
16 = b1 * (3/4)^7
Для нахождения b1, делим обе части уравнения на (3/4)^7:
b1 = 16 / (3/4)^7
Вычисляя значение, получаем:
b1 ≈ 16 / 0.1335 ≈ 119.85
Теперь, используя найденное значение b1 и формулу для нахождения седьмого члена, мы можем вычислить b7:
b7 = b1 * (3/4)^(7-1)
b7 ≈ 119.85 * (3/4)^6
b7 ≈ 119.85 * 0.4219 ≈ 50.61
Таким образом, седьмой член геометрической прогрессии равен примерно 50.61.
bn = b1 * q^(n-1)
где bn - n-ый член прогрессии, b1 - первый член прогрессии, q - знаменатель прогрессии, n - номер члена прогрессии.
Из условия известно, что b8 = 16 и q = 3/4.
Подставляя значения в формулу, получаем:
16 = b1 * (3/4)^(8-1)
Упрощая, получаем:
16 = b1 * (3/4)^7
Для нахождения b1, делим обе части уравнения на (3/4)^7:
b1 = 16 / (3/4)^7
Вычисляя значение, получаем:
b1 ≈ 16 / 0.1335 ≈ 119.85
Теперь, используя найденное значение b1 и формулу для нахождения седьмого члена, мы можем вычислить b7:
b7 = b1 * (3/4)^(7-1)
b7 ≈ 119.85 * (3/4)^6
b7 ≈ 119.85 * 0.4219 ≈ 50.61
Таким образом, седьмой член геометрической прогрессии равен примерно 50.61.
0
·
Хороший ответ
9 января 2024 13:48
Остались вопросы?
Еще вопросы по категории Алгебра
Найдите sin2a, если sina+cosa=√0,6...
на рис изображен график функции y=f(x). прямая,проходящая через точку (-2;4), касается этого графика в точке с абциссой 2. найдите f'(2)...
Помогите!!! Срочно. 7*9^(x^2-3x+1) + 5*6^(x^2-3x+1) - 48*4^(x^2-3x)...
Сколько осей симметрии имеет дорожный знак, изображенный на рисунке? пожалуйста помогите...
упростить выражение ? .......