Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
16 октября 2024 09:22
273
Найти все значения а, при которых уравнение 2х^3 - 4х^2 - 8x + а = 0 имеет два различных корня.
1
ответ
Для того чтобы уравнение имело два различных корня, дискриминант должен быть больше нуля. Для уравнения вида ax^2 + bx + c = 0 дискриминант равен D = b^2 - 4ac.
В данном случае у нас уравнение 2x^3 - 4x^2 - 8x + a = 0. Сначала найдем его производную: 6x^2 - 8x - 8. Это квадратное уравнение имеет дискриминант D = (-8)^2 - 4*6*(-8) = 64 + 192 = 256.
Таким образом, уравнение 2x^3 - 4x^2 - 8x + a = 0 имеет два различных корня для всех значений параметра а, при которых D > 0. Так как D всегда больше нуля, уравнение имеет два различных корня для всех значений а.
В данном случае у нас уравнение 2x^3 - 4x^2 - 8x + a = 0. Сначала найдем его производную: 6x^2 - 8x - 8. Это квадратное уравнение имеет дискриминант D = (-8)^2 - 4*6*(-8) = 64 + 192 = 256.
Таким образом, уравнение 2x^3 - 4x^2 - 8x + a = 0 имеет два различных корня для всех значений параметра а, при которых D > 0. Так как D всегда больше нуля, уравнение имеет два различных корня для всех значений а.
0
·
Хороший ответ
16 октября 2024 09:24
Остались вопросы?
Еще вопросы по категории Математика
Вопрос: Какое задание должно быть выполнено за 100 минут?...
Каждый час между двумя соседними кустами крапивы в ряду вырастает ещё два таких же. Сколько кустов нужно посадить изначально, чтобы через три часа общ...
Какое средство передвижения нужно использовать для выполнения задания?...
Количество подписчиков начинающего видеоблогера за январь увеличилось на n человек, а за февраль - на 1500 человек. При этом за январь количество под...
Чему равно 10 в степени 2?...