Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения магнитного поля внутри вращающегося заряженного цилиндра воспользуемся формулой для магнитного поля внутри проводящего цилиндра, который вращается вокруг своей оси. Магнитное поле внутри такого цилиндра равно:
\[ B = \frac{\mu_0 q \omega R^2}{2(R^2 + h^2)^{3/2}} \]
где:
- \( B \) - магнитное поле,
- \( \mu_0 \) - магнитная постоянная (\( 4\pi \times 10^{-7} \, \text{T}\cdot\text{m/A} \)),
- \( q \) - заряд цилиндра (\( 10 \times 10^{-6} \, \text{C} \)),
- \( \omega \) - угловая скорость вращения (\( 60 \, \text{рад/с} \)),
- \( R \) - радиус цилиндра (\( 0.1 \, \text{м} \)),
- \( h \) - высота цилиндра (\( 0.2 \, \text{м} \)).
Подставим известные значения и рассчитаем магнитное поле внутри цилиндра:
\[ B = \frac{4\pi \times 10^{-7} \times 10 \times 10^{-6} \times 60 \times (0.1)^2}{2((0.1)^2 + (0.2)^2)^{3/2}} \]
\[ B = \frac{2.4\pi \times 10^{-11}}{2 \times 0.125} \]
\[ B = \frac{1.2\pi \times 10^{-11}}{0.25} \]
\[ B = 4.8\pi \times 10^{-11} \, \text{T} \]
\[ B \approx 1.51 \times 10^{-10} \, \text{T} \]
Таким образом, магнитное поле внутри вращающегося заряженного цилиндра равно примерно \( 1.51 \times 10^{-10} \, \text{T} \).
\[ B = \frac{\mu_0 q \omega R^2}{2(R^2 + h^2)^{3/2}} \]
где:
- \( B \) - магнитное поле,
- \( \mu_0 \) - магнитная постоянная (\( 4\pi \times 10^{-7} \, \text{T}\cdot\text{m/A} \)),
- \( q \) - заряд цилиндра (\( 10 \times 10^{-6} \, \text{C} \)),
- \( \omega \) - угловая скорость вращения (\( 60 \, \text{рад/с} \)),
- \( R \) - радиус цилиндра (\( 0.1 \, \text{м} \)),
- \( h \) - высота цилиндра (\( 0.2 \, \text{м} \)).
Подставим известные значения и рассчитаем магнитное поле внутри цилиндра:
\[ B = \frac{4\pi \times 10^{-7} \times 10 \times 10^{-6} \times 60 \times (0.1)^2}{2((0.1)^2 + (0.2)^2)^{3/2}} \]
\[ B = \frac{2.4\pi \times 10^{-11}}{2 \times 0.125} \]
\[ B = \frac{1.2\pi \times 10^{-11}}{0.25} \]
\[ B = 4.8\pi \times 10^{-11} \, \text{T} \]
\[ B \approx 1.51 \times 10^{-10} \, \text{T} \]
Таким образом, магнитное поле внутри вращающегося заряженного цилиндра равно примерно \( 1.51 \times 10^{-10} \, \text{T} \).
0
·
Хороший ответ
27 октября 2024 07:03
Остались вопросы?
Еще вопросы по категории Физика
Лабораторная работа №4 «Изучение явления электромагнитной индукции» ВЫВОД...
1.Дно ящика массой 100 кг имеет площадь 0,04м в квадрате . Вычислите давление,которое производит чщик на пол. 1) 0,004 Па 3)2500 Па 2) 40 Па 4)25000 П...
1. Может ли полезная работа быть больше полной? 2. Что такое коэффициент полезного действия? 3. Формула КПД: 4. Может ли КПД быть больше 100%? 5. Прим...
По графикам зависимости пути от времени (рисунок 40) двух тел движущихся равномерно Определите скорости этих тел скорость какого тела БОЛЬШЕ?...
НАПИШИТЕ ВАРИАНТЫ ОТВЕТОВ A2. Сколько нейтронов содержит ядро изотопа лития 3Li? A) 3 нейтрона Б) 4 нейтрона В) 7 нейтронов Г) 10 нейтронов А3. Элем...