Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
6 ноября 2024 13:36
166
Диагональ осевого сечения цилиндра равна 20 см и составляет с радиусом основания цилиндра угол 60°. Найти площадь полной поверхности цилиндра.
1
ответ
Для решения этой задачи нам нужно найти радиус основания цилиндра.
Из условия задачи известно, что диагональ осевого сечения цилиндра равна 20 см, а угол между диагональю и радиусом основания цилиндра равен 60°.
Мы можем использовать триугольник, образованный диагональю, радиусом и половиной высоты цилиндра.
Так как угол между диагональю и радиусом равен 60°, то мы имеем равносторонний треугольник. То есть, радиус основания цилиндра равен половине диагонали, то есть 10 см.
Теперь мы можем найти площадь полной поверхности цилиндра. Полная поверхность цилиндра состоит из двух оснований и боковой поверхности.
Площадь боковой поверхности цилиндра равна произведению окружности на высоту цилиндра. Так как высота цилиндра равна диагонали, то есть 20 см, а радиус основания равен 10 см, то площадь боковой поверхности равна 2πrh = 2π*10*20 = 400π см².
Площадь одного основания цилиндра равна πr², где r - радиус основания. Площадь двух оснований равна 2πr² = 2π*10² = 200π см².
Итак, площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и двух оснований: 400π + 200π = 600π см².
Ответ: Площадь полной поверхности цилиндра равна 600π квадратных сантиметров.
Из условия задачи известно, что диагональ осевого сечения цилиндра равна 20 см, а угол между диагональю и радиусом основания цилиндра равен 60°.
Мы можем использовать триугольник, образованный диагональю, радиусом и половиной высоты цилиндра.
Так как угол между диагональю и радиусом равен 60°, то мы имеем равносторонний треугольник. То есть, радиус основания цилиндра равен половине диагонали, то есть 10 см.
Теперь мы можем найти площадь полной поверхности цилиндра. Полная поверхность цилиндра состоит из двух оснований и боковой поверхности.
Площадь боковой поверхности цилиндра равна произведению окружности на высоту цилиндра. Так как высота цилиндра равна диагонали, то есть 20 см, а радиус основания равен 10 см, то площадь боковой поверхности равна 2πrh = 2π*10*20 = 400π см².
Площадь одного основания цилиндра равна πr², где r - радиус основания. Площадь двух оснований равна 2πr² = 2π*10² = 200π см².
Итак, площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и двух оснований: 400π + 200π = 600π см².
Ответ: Площадь полной поверхности цилиндра равна 600π квадратных сантиметров.
1
·
Хороший ответ
6 ноября 2024 13:39
Остались вопросы?
Еще вопросы по категории Математика
Какие числа получатся, если возвести числа от 1 до 10 в 3 степень?...
начерти отрезок ab длиной 60 мм отметь на нём точку C так чтобы длина отрезка ac была равна 15 мм узнай длину отрезка CB не измеряя его...
Чему равно произведение 10 и 5?...
Чему равна масса 1 и 2 килограммов в совокупности?...
Сколько будет cos 90 градусов????...