Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 ноября 2024 13:36
226
Диагональ осевого сечения цилиндра равна 20 см и составляет с радиусом основания цилиндра угол 60°. Найти площадь полной поверхности цилиндра.
1
ответ
Для решения этой задачи нам нужно найти радиус основания цилиндра.
Из условия задачи известно, что диагональ осевого сечения цилиндра равна 20 см, а угол между диагональю и радиусом основания цилиндра равен 60°.
Мы можем использовать триугольник, образованный диагональю, радиусом и половиной высоты цилиндра.
Так как угол между диагональю и радиусом равен 60°, то мы имеем равносторонний треугольник. То есть, радиус основания цилиндра равен половине диагонали, то есть 10 см.
Теперь мы можем найти площадь полной поверхности цилиндра. Полная поверхность цилиндра состоит из двух оснований и боковой поверхности.
Площадь боковой поверхности цилиндра равна произведению окружности на высоту цилиндра. Так как высота цилиндра равна диагонали, то есть 20 см, а радиус основания равен 10 см, то площадь боковой поверхности равна 2πrh = 2π*10*20 = 400π см².
Площадь одного основания цилиндра равна πr², где r - радиус основания. Площадь двух оснований равна 2πr² = 2π*10² = 200π см².
Итак, площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и двух оснований: 400π + 200π = 600π см².
Ответ: Площадь полной поверхности цилиндра равна 600π квадратных сантиметров.
Из условия задачи известно, что диагональ осевого сечения цилиндра равна 20 см, а угол между диагональю и радиусом основания цилиндра равен 60°.
Мы можем использовать триугольник, образованный диагональю, радиусом и половиной высоты цилиндра.
Так как угол между диагональю и радиусом равен 60°, то мы имеем равносторонний треугольник. То есть, радиус основания цилиндра равен половине диагонали, то есть 10 см.
Теперь мы можем найти площадь полной поверхности цилиндра. Полная поверхность цилиндра состоит из двух оснований и боковой поверхности.
Площадь боковой поверхности цилиндра равна произведению окружности на высоту цилиндра. Так как высота цилиндра равна диагонали, то есть 20 см, а радиус основания равен 10 см, то площадь боковой поверхности равна 2πrh = 2π*10*20 = 400π см².
Площадь одного основания цилиндра равна πr², где r - радиус основания. Площадь двух оснований равна 2πr² = 2π*10² = 200π см².
Итак, площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и двух оснований: 400π + 200π = 600π см².
Ответ: Площадь полной поверхности цилиндра равна 600π квадратных сантиметров.
1
·
Хороший ответ
6 ноября 2024 13:39
Остались вопросы?
Еще вопросы по категории Математика
Какое количество часов составляет 1000 секунд?...
За первый день турист прошел расстояние 18 км что составляет 40 процентов всего пути который он должен преодолеть найдите длину пути который должен пр...
Найдите аb,если a^2+b^2=101 и а+b=13....Помогите пожалуйста))))))...
0,3р+0,15р...
Можно ли ставить разделительный мягкий знак перед гласной?...